

40th Indian National Mathematical Olympiad - 2026

Time: 4.5 hours

January 18, 2026

Instructions:

- Answer all questions. All questions carry equal marks. Maximum marks: 102.
- Each answer should start on a new page, clearly indicating the question number.
- No marks will be awarded for stating an answer without justification.
- Calculators (in any form), protractors, and electronic devices are not allowed.
- Rulers and compasses are allowed. Draw neat and labeled diagrams.

1. Let x_1, x_2, x_3, \dots be a sequence of positive integers defined as follows: $x_1 = 1$ and for each $n \geq 1$ we have

$$x_{n+1} = x_n + \lfloor \sqrt{x_n} \rfloor.$$

Determine all positive integers m for which $x_n = m^2$ for some $n \geq 1$. (Here $\lfloor x \rfloor$ denotes the greatest integer less or equal to x for every real number x .)

2. Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a function satisfying the following condition: for each $k > 2026$, the number $f(k)$ equals the maximum number of times a number appears in the list $f(1), f(2), \dots, f(k-1)$. Prove that $f(n) = f(n + f(n))$ for infinitely many $n \in \mathbb{N}$.

(Here \mathbb{N} denotes the set $\{1, 2, 3, \dots\}$ of positive integers.)

3. Let ABC be an acute-angled scalene triangle with circumcircle Γ . Let M be the midpoint of BC and N be the midpoint of the minor arc \widehat{BC} of Γ . Points P and Q lie on segments AB and AC respectively such that $BP = BN$ and $CQ = CN$. Point $K \neq N$ lies on line AN with $MK = MN$. Prove that $\angle PKQ = 90^\circ$.

4. Two integers a and b are called *companions* if every prime number p either divides both or none of a, b . Determine all functions $f : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ such that $f(0) = 0$ and the numbers $f(m) + n$ and $f(n) + m$ are *companions* for all $m, n \in \mathbb{N}_0$.

(Here \mathbb{N}_0 denotes the set of all non-negative integers.)

5. Three lines ℓ_1, ℓ_2, ℓ_3 form an acute angled triangle \mathcal{T} in the plane. Point P lies in the interior of \mathcal{T} . Let τ_i denote the transformation of the plane such that the image $\tau_i(X)$ of any point X in the plane is the reflection of X in ℓ_i , for each $i \in \{1, 2, 3\}$. Denote by P_{ijk} the point $\tau_k(\tau_j(\tau_i(P)))$ for each permutation (i, j, k) of $(1, 2, 3)$.

Prove that $P_{123}, P_{132}, P_{213}, P_{231}, P_{312}, P_{321}$ are concyclic if and only if P coincides with the orthocentre of \mathcal{T} .

6. Two decks \mathcal{A} and \mathcal{B} of 40 cards each are placed on a table at noon. Every minute thereafter, we pick the top cards $a \in \mathcal{A}$ and $b \in \mathcal{B}$ and perform a *duel*.

For any two cards $a \in \mathcal{A}$ and $b \in \mathcal{B}$, each time a and b duel, the outcome remains the same and is independent of all other duels. A duel has three possible outcomes:

- If a card wins, it is placed back at the top of its deck and the losing card is placed at the bottom of its deck.
- If a and b are evenly matched, they are both removed from their respective decks.
- If a and b do not interact with each other, then both are placed at the bottom of their respective decks.

The process ends when both decks are empty. A process is called a *game* if it ends. Prove that the maximum time a *game* can last equals 356 hours.