INMO 2026

Official Solutions

Problem 1. Let z,29,23,... be a sequence of positive integers defined as follows: z; =1
and for each n > 1 we have
Tn+1 = Tn + I_\/ xnj .

Determine all positive integers m for which z,, = m? for some n > 1. (Here |z| denotes the
greatest integer less or equal to z for every real number z.)

Solution. We claim that m satisfies the condition if and only if m = 2* for some integer
k>0.

The first few terms of (x,,),,>1 are[1],2,3,[4],6,8,10,13,[16], 20,24, 28, 33,38, 44, 50, 57,[ 64], . ..
so we know the claim is true for m < 8. Let k > 3 be a positive integer for which there
exists a t such that x; = 4%, It suffices to show that the first term in the sequence (z,,),>¢
which is a perfect square equals 4!, Define the sequences (@n)n>1, (bn)n>1 @S an = |\/Tn]
and b,, = x,, — a2 for each n. Clearly, z,, = a2 + b, with 0 < b,, < 2a,, for each n > 1. We keep
track of the pairs (a,,b,) for n > t until we reach a square.

Claim. For any positive integer n, we have

(ana 2an) lf bn = 0
(an+2,bn+2) = (an +1,b, — 1) if 0 < b, < ap
(an +1,0,) if a,, < b, < 2a,

Proof. We consider each of the three cases as below:
* Suppose b, =0, then x,, = a2 s0 2,41 = a2 + a,, and z,,12 = a2 + 2a, < (a, + 1)?> hence
bpt2 = 2a, and a2 = Gy.
* Suppose 0 < b, < a,, then
Tpi1 = Tp + ap = a2 + ap + b, < a? +2a, < (a, +1)> = a1 =a, and b,y 1 = a, + by,
SO
Tn+2 = Tn41 + Ap41 = a721 + (2an + bn) = (an + 1)2 + (bn - 1) S [(an + 1)27 (an + 2)2 - 1]
hence a,42 =a, +1and b2 = b, — 1.
* Finally, suppose b, > a,, then z,,.1 =z, + a, = a2 + a, + b, = (an + 1)?> + (b, —a, — 1)
S0 bpt+1 = by, —a, — 1 and ap41 = a, + 1, hence
Tpyo = Tpil + Gni1 = Tn + 20, +1 = (a, +1)* + b, < (an +2)?
SO b,y2 = b, and a2 = a, + 1. This proves the claim. O
Now Ty = 4k, SO Tty = 4k +2k and T2 = 4k —|—22k SO (2k)2 =T < Tppq < Ty < (2k + 1)2
We claim that for each 1 < j < 2% we have by;1 = 2% — (j — 1) and b;2; = 2¥*! and
A42j—1 = Qp425 = 2% + j — 1. We will proceed by induction on j > 1. The base case j = 1

is true from the above reasoning. Suppose that the claim holds for some j < 2*, then we
know by combining the induction hypothesis and the previous claim that

0<2¥ —(j—1) =bryoj 1 < 2" =as < aryaj-1 = brrgjr1 =broj 1 —1=2"—3j
Aty25 = Qt +5—-1= Qk + (] — 1) < 2k+1 = bt+2j < 2at+2j — bt+2j+2 = bt+2j = 2k+1
0 & {brrzj—1: bz} = arrojir = arpzjor +1=2"+j and  apajro = arpoy +1=2" 4
completing the induction step.
Since by # 0 for all t < ¢ < t + 2F + 1 we know that none of z;,1,...,z,,.+ are perfect
squares. Now b, gri1_y = 2¥ — (28 — 1) = 1 hence by ors11 = byyorii_; — 1 =080 Ty ort14y
is a perfect square. Also, a; gr1_; = 28 +2F — 1 = 2M1 — 1 and b, ox11_; # 0 hence

Qpqok+14] = Qpyok+1_1 + 1= ok+1,
Thus, z;,91+1.; = 4511 is the next perfect square in (z,,),~: as desired. O
tH2k+14] >



Problem 2. Let f : N — N be a function satisfying the following condition: for each

k > 2026, the number f(k) equals the maximum number of times a number appears in

the list f(1), f(2),..., f(k—1). Prove that f(n) = f(n+ f(n)) for infinitely many n € N.
(Here N denotes the set {1,2,3,...} of positive integers.)

Solution. Let S = {f(1), f(2), f(3)...} be the set of all possible values taken by f. We
make the following claims:

Claim 1. For each k > 2026, we have f(k+ 1) = f(k) or f(k+1) = f(k) + 1.

Proof. Indeed, the maximum frequency of an element in f(1), f(2),..., f(k) is at least as
much as the maximum frequency of an element in f(1), f(2),..., f(k—1) and the increment
is 1 if and only if f(k) equals an element with this maximum frequency. O

Claim 2. The set S is infinite.

Proof. Assume to the contrary. By Claim 1, f is non-decreasing, so the assumption
implies f will be eventually constant. Thus, there exist positive integers NV, c such that
f(n)=cforalln > N. Now f(N+1)= f(N+2)=---= f(N+c+1) = c so the frequency of ¢
in f(1), f(2),..., f(N+c¢+1) is at least ¢+ 1, hence f(N +c+2) > ¢+ 1, a contradiction! [

Let T =S\ {f(1), f(2),..., f(2027)} and for each n € T, let z,, be the smallest positive
integer with f(z,) = n.

Claim 3. We have f(z,) = f(zn, + f(zn)) =nforeachn e T.

Proof. Letn € T and t be the element with the maximum frequency in the list
f(l)af(Q)v"wf(xn - 1)'

Note that ¢ occurs precisely n times in this list of numbers, since f(z,) = n. Note that
n does not occur in the list f(1), f(2),..., f(z, — 1) by the minimality of z,,. So ¢t # n.

We will prove by induction that 0 < i <n = f(z, +14) = n. This is true for i = 0, so we
show that f(z, +i) =n = f(x, +i+ 1) =n for all i < n, which suffices.

Indeed, the element ¢ has frequency n in the list f(1), f(2),..., f(zn),..., f(zn + 1) and
the element n, which occurs for the first time at f(z,) and equals f(z, + j) for each
j < i, occurs only i + 1 times. Thus, the maximum frequency of an element in the list
f), f2),..., f(zn),..., f(zn +1) is n, hence f(z, +i+ 1) = n completing the induction. O

Since 7 is infinite by Claim 2, by Claim 3 we have infinitely many positive integers n

with f(n) = f(n + f(n)), namely, n = z,, for m € T. O

Remark. Eventually, the sequence becomes

ottt bl 2,42, 2.
———

t+1 times t+2 times t+3 times




Problem 3. Let ABC be an acute-angled scalene triangle with circumcircle I'. Let M be

the midpoint of BC and N be the midpoint of the minor arc BC of T. Points P and Q lie
on segments AB and AC respectively such that BP = BN and CQ = CN. Point K # N
lies on line AN with MK = M N. Prove that ZPK(Q@ = 90°.

Solution. Reflect NV in M to obtain L. Note that MK = MN = ML — /LKN = 90°.
Since BP = BN = BL and CQ = CN = CL and

LLBA+ /LCA = ZBLC — Z/BAC = Z/BNC — ZBAC = (180° — 2£BAC),

we have
/ZBLP + ZCLQ = (90° - ;ALBA) + (90° — ;ALCA)
= 180° — %(ALBA + ZLCA)
1
= 180° — 3 (180° — 2£4BAC)
=90° + LBAC.
Thus

/PLQ = 360° — /BLC — (/BLP + /CLQ) = 360° — (180° — ZBAC) — (90° + ZBAC) = 90°.

Now BN = CN = BP = CQ and so ﬁ’,@ are vectors with equal magnitude.
Hence the vector BP + @ is parallel to the internal bisector of angle ZBAC. Let R be the
midpoint of PQ, then MEB = i (ﬁ + C@) so MR || AN. Thus, the reflection T of L in R

lies on line AN as MN = ML.

Now ZPLQ = 90° so LT is the diameter of the circumcircle of triangle PLQ. Since
/ZLKN =90° and T lies on KN, we conclude that Z/LKT = 90°, hence K lies on the circle
with diameter 7'L. Thus K lies on the circumcircle of triangle PLQ so /PLQ = 90° —

/PKQ = 90° as desired. O
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Problem 4. Two integers a and b are called companions if every prime number p either
divides both or none of a,b. Determine all functions f : No — Ny such that f(0) = 0 and
the numbers f(m)+n and f(n) + m are companions for all m,n € Ny.

(Here Ny denotes the set of all non-negative integers.)

Solution 1. We prove the following claim.
Claim. Let p be a prime number that divides f(z) — f(y), then p divides = — y.

Proof. Let n > 0 be a sufficiently large integer such that z = np — f(z) > 0. Then
pl flz)+2z = pla+ f(z) and likewise

fy)+2==(f(x) = f(y)) + (f(2) +2) =0 (mod p)
hence p | y + f(z). Together we get

z—y=(x+[f(2) - (y+f(2)=0 (modp)

as desired. O

Thus every prime factor p of f(x + 1) — f(z) divides 1, so it must be the case that for
each z > 0 we have f(z+1) — f(z) € {-1,1}.

Note that f(z) = f(z +2) = 3| (:1: +2) - f(x) = 3| (z+2)— 2 which is clearly
impossible. Thus, f(r+1) — f(z) = f(x +2) — f(x + 1) for all z > 0 hence f(x + 1) — f(x) is
a constant for all z > 0. Since f only takes non-negative values, this constant must be 1
hence f(x+1) = f(z)+1forall z > 0so f(z) =z for all z € N. O

Solution 2. Notice that f(z ) = g for all z € Ny is a solution as both f(m)+n and f(n)+
equal to m + n for each m,n > 0. We claim that this is the only function which satlsﬁes
the above condition. Let us denote the statement as

P(z,y): f(z)+y and z+ f(y) are companions.

Plug y = 0 to conclude that f(x) and = have the same set of prime divisors for each
x > 1. In particular, f(2*) is a power of 2 (other than 1) for all £ > 1 and f(1) = 1. Further,
let g(k) denote the positive integer for which f(2¥) = 29(*), Plug x = 29%*) and y = 2* to
conclude
29(9(k) 4 ok and 29 4+ 29%) are companions

hence 2909(k) 4+ 2% is a power of 2. Now 2/99)—kl 11 divides 2909(F) 4 2k so if g(g(k)) # k,
then 2/9(9(k)=kl 4 1 is odd and greater than 1, which is absurd.

So we must have g(g(k)) = k for each k£ > 0. Thus, g is a bijection on positive integers, as
clearly g is surjective and for any «,b € N, we have g(a) = g(b) = a = g(g(a)) = g(g(b)) = b,
hence it is injective as well. Now plug x = 29(*) and y = 2 to get 2° + 2 and 29(®) 4 29(%) are
companions. Suppose b = a + 2, we conclude that 2/9(¢+2)=9(a)l 1 1 must be a power of 5.

Claim 1. The equation 2” + 1 = 5Y has (2, 1) as the only positive integer solution.

Proof. Indeed, taking the equation modulo 5 gives z = 2 (mod 4) as 2* =4 mod 5. Taking
it modulo 3, we get (—1)¥ = (—1)" + 1 =2 (mod 3) hence y is odd. Now

2" =5Y —1=(5-1)- (5" 4524 ... 45 +1)

but 5Y~! +..- 45! +1 is odd since y is odd, hence y = 1 and z = 2 is the only possibility. O

By Claim 1, we know that g(a+2) € {g(a) — 2, g(a) + 2} for each a > 1. However, g is also
bijective, so g(a +2) = gla) =2 = g(a+4) = g(a) —4 else ga +4) = gla+2) + 2 = g(a),
which would yield a contradiction.

Similarly, we can conclude that g(a + 2m) = g(a) — 2m for each m > 1, however, g only
takes positive values so this will fail to hold for m > g(a). This forces g(a + 2) = g(a) + 2 for
each a € N. Together with the fact that g is a bijection, we conclude that {¢(1),¢(2)} = {1,2}
and g(n +2) =g(n) + 2 for each n > 1.

Finally, f(2) + 1 and 2 + f(1) = 3 are companions, so f(2) = 22 = 4 is impossible, hence
f(2) =2 and f(4) =4, so g(n) = n for all n > 1. In particular, f(2*) = 2* for each k > 1.

We will prove the two claims below before finishing the proof.



Claim 2. Let p be an odd prime and m be a positive integer with p | 2™ — 1. For each
k > 0 we have
k”
=
2m —1

Proof. The case k = 0 is obvious, so we proceed by induction on & > 0. Now

op™tm 1 gptTtm o gptm
om —1  opbm _1  2m _ ]
and
k+1
2P "1 pFmyp—1 p*m\p—2 p*m — —
2p,¢m71:((2 Pl @ (') £ 1) = 1414+ 1=0 (mod p)

p times

implies that if the statement is true for any value of %, it is true for £ + 1 as well. This
completes the induction step. O
For each prime p and natural number n, let v,(n) denote the largest integer j such that

P | n.

Claim 3. Fix y > 1. Infinitely many prime numbers p exist such that for some n > 0, we
have p | 2™ + y.

Proof. Assume without loss of generality that y is odd, by focusing only on n > vs(y).
Assume to the contrary that only finitely many such primes p exist and enumerate them
as 2 < p; < py < -+ < pr. Let £ > 1 be a positive integer that we will choose later
and let M = (p; -----pr)® and N = M - ¢(M) where ¢ denotes the Euler-totient function.
By Euler’s Theorem, we have p; | M | 2¢(™) — 1 | 2V — 1 for each 1 < i < k. Choose
£ >1+max(vy, (y+1)|1 < i < k). Notice that

N py =2 — 1)+ (y+1)

and v,,(2Y — 1) > v,,(y + 1) for each 1 < i < k by Claim 2, hence vy, (2" +y) = v,,(y + 1)
for each i. However, 2"V 4y > y + 1, so it must have a prime factor outside of p1,po, ..., ps,
yielding the desired contradiction! O

Plug x = 2" to see that 2" + y and 2™ + f(y) are companions for each n > 1 and y > 1.
Choose n such that for some prime p > |f(y) — y|, we have p | 2" + y. This is possible due
to Claim 3. Now p | 2" +y and so p | 2" + f(y) = p| f(y) — y. This is only possible when
f(y) = y. Together with f(0) = 0, we conclude that f(z) = z for all z € Ny.

O

Remark. The following theorems are popular in Olympiad number theory and can be
used to simplify each of the above claims.

1. Claim 1 can be resolved by Zsigmondy’s Theorem which states: For all positive
integers a, m,n with m < n, the number «" + 1 has a prime factor that does not divide
a™ + 1 with the exception of a = 2,m = 1,n = 3.

2. Claim 2 can be resolved by Exponent Lifting Lemma (LTE) which states: For any
odd prime p and positive integers a, b,n with p | a« — b, we have

vp(a™ —b") = vp(n) + vp(a —b).

3. Claim 3 can be resolved by Kobayashi’s Theorem which states: Let M be an infinite
set of positive integers and c be a positive integer. If the set of prime numbers p such
that p | m for some m € M is finite, then the set of primes ¢ such that ¢ | m + ¢ for
some m € M is infinite.



Problem 5. Three lines /¢4, /5, ¢35 form an acute angled triangle 7 in the plane. Point P
lies in the interior of 7. Let 7; denote the transformation of the plane such that the image
7:(X) of any point X in the plane is the reflection of X in ¢;, for each i € {1,2,3}. Denote
by P;;i the point 7 (7;(m;(P))) for each permutation (4, j, k) of (1,2, 3).

Prove that Pio3, Pi32, Po13, Pas1, P312, Ps21 are concyclic if and only if P coincides with the
orthocentre of 7.

Solution. Suppose lines /5 and /3 intersect at point A;, define the points A, and Aj;
analogously. Without loss of generality, suppose A;, A, A3 occur in counter-clockwise
order on the circumcircle of 7. For all points X in the plane of 7, let X;; = 7;(7;(X)) and
X, =7(X) for 1 <i,j,k < 3. Let B; = 7;(4;) for each i € {1, 2,3}.

We prove the following claims for all points X in the plane with X ¢ {A;, By, Ag, Ba, A3, B3 }.
The variants of each claim are valid when the indices are cyclically permuted. Note that
lines A;X; and B;X,; are well-defined for each i € {1,2,3} due to X not coinciding with
these six points.

Claim 1. A1X23 = A1X32 = AlX and 4X32A1X = 4XA1X23 = 24A2A1A3.

Proof. Denote by ZABC the counter-clockwise oriented angle between rays Q,B?
modulo 360°.
Note that AlX = A1X2 = A1X3 SO A1X32 = A1X2 = AlX and A1X23 = A1X3 = AlX
Angle chasing yields

L X30A1 X = £ X30A1 A9 + LAJA X
=LAA1 Xs + LA AL X (since X5, X3, are reflections in A;A,)
= LA3A A3 + LA3A Xg + LAJAL X
= LAyA A3 + L XA A3+ LAA1 X (since Xs, X are reflections in A A3)

=2/A2A1 A3
as desired. Similarly, /X A; Xo3 = 2/A5A4, A3 and the claim follows. O
Xo3
X32
Ay
()
Xo
7 *
X3 °
X
A2 A3

Claim 2. Line A4;X; is the perpendicular bisector of X531 X321.

Proof. By Claim 1 applied to point X;, we conclude A;X53; = A4;X; = A;1X32; and
AXo31A1 X1 = AX,A1 X321 since both are A;-isosceles triangles, with apex angle at ver-
tex A; equal to 2/A5A, A;. Thus X; is equidistant from Xs3;, X301 and hence A4, X; both
lie on the perpendicular bisector of X331 X391, proving the claim. O

Claim 3. Line B;X; is the perpendicular bisector X35 X7123.



Proof. By Claim 1, line A; X is the perpendicular bisector of X3, X53. Reflecting in ¢, we

conclude that line B; X; is the perpendicular bisector of X;33 X723, as desired. O
.X231
.X321
Ay
.X
Ay As
° Xl
By
.X 132
.X 123

(=) Suppose all six points Pjs3, Pi32, P213, Pa31, Ps12, Ps21 lie on a circle denoted I with
centre denoted O that for some point P in the interior of 7. Since P is in the interior of
T, we know that P ¢ {A;, By, As, Bs, A3, B3}, so each of the above claims applies to P.

By Claims 2 and 3, we conclude that the lines A; P, and B; P, are perpendicular bi-
sectors of the chords Ps31 P01 and P32 P03 of T respectively. Lines A; P, and B; P, must
coincide or P, is the center of I'. Now A; P, and B, P, coincide if and only if 4, P L /;.

By cyclically permuting the indices, we conclude that

P, =0 or A;P; 1 ¢; for each i € {1,2,3}.

Now P, P,, P are pairwise distinct, so for at least two indices i, we must have A;P | ¢,
and so P is the intersection of two of the altitudes of 7, hence P coincides with the
orthocentre of 7. O

(<= ) Suppose P is the orthocentre of 7. Since 7 is acute-angled, P is in the interior
of 7 hence all claims apply to P. Thus, P, A;, B;, P, are collinear for each i € {1,2,3}. By
Claims 2 and 3 and all their cyclic variants, we conclude that P is equidistant from P,
and Pj;;, and that P is equidistant from P;;; and P;;, for each permutation ijk of 1,2, 3.
Since all permutations of 1, 2,3 can be achieved by performing transpositions ijk — ikj
and ijk — jik, we conclude that P is equidistant from each of Ps3, P32, Po13, Pas1, Ps12, P321,
proving that the six points all lie on a circle with center P. O



Problem 6. Two decks A and B of 40 cards each are placed on a table at noon. Every
minute thereafter, we pick the top cards a € A and b € B and perform a duel.

For any two cards a € A and b € B, each time a and b duel, the outcome remains the
same and is independent of all other duels. A duel has three possible outcomes:

¢ If a card wins, it is placed back at the top of its deck and the losing card is placed at
the bottom of its deck.

¢ If ¢ and b are evenly matched, they are both removed from their respective decks.

¢ If ¢ and b do not interact with each other, then both are placed at the bottom of their
respective decks.

The process ends when both decks are empty. A process is called a game if it ends.
Prove that the maximum time a game can last equals 356 hours.

Solution. Let M(n) denote the maximum number of moves a game can last with the
initial decks A, B consisting of n cards each. We shall prove by strong induction on n > 1

that M(n) = @ The base case n = 1 is clear, so assume that M (k) = @ for
k=1,2,...,n— 1. We shall prove the claim for M(n) now.

Estimation. We will prove the bound M(n) < M(n — 1) + (n?> —n + 1). Consider a game
as below.

Let A = {a1,az2,...,a,} and B = {b1,bs,...,b,} be all the cards labelled from top to
bottom in each deck. Call a pair (a;, b;) good if a; and b; are evenly matched, and otherwise
call it bad. We call a bad pair (a;, b;) nasty if a; and b; do not interact with each other.

Given that the game ends with both decks empty, it is possible to assign to each a; a
unique b; for which (a;, b;) is a good pair, since there was a moment when the card a; was
removed from its deck along with a card in B.

Thus, there are at least n good pairs among a total of n? pairs (a,b) € A x B. Thus, at
most n? —n bad pairs exist in A x B. Enumerate the pair of cards (a,b) € A x B at the top
of their decks at every minute by the sequence P;, P», P;,... and let r denote the smallest
positive integer such that P, is a good pair. Each of the pairs P,..., P, is bad.

If » > n? — n + 1, then by the Pigeonhole Principle, for some 1 < i < j < r, we have
P, = P; as there are at most n? — n bad pairs. However, notice that for any bad pair (a, b),
when the duel occurs between a,b and one or both of them are placed at the bottom of
their respective decks, the relative cyclic order of the cards in each deck is preserved. This
means that if the pair (a,b) ever appears again at the top of both decks, the two decks
are placed identically to the previous instant in which this happened. Thus, P, = F;
implies that the decks A, B are arranged exactly the same way at the i-th minute and the
j-th minute respectively, so P,y = P,y for all k£ > 0, and the process becomes periodic,
hence all configurations after the j-th minute have occured previously in the game. But
since no cards have been removed from play by the j-th minute, the sequence of duels
never yields a good pair and so no cards are ever removed from play and the game never
actually ends, a contradiction!

This proves that r < n? — n hence after r + 1 moves, we are down to two decks of n — 1
cards each. The game thereafter can last at most M (n — 1) moves, so the total number of
moves the game lasted equals r + 1+ M(n —1) < (n? —n+ 1) + M(n — 1). Since this is true
for any game with decks of size n, we conclude that M(n) < n? —n + M(n — 1). Together
with the induction hypothesis, we have

Mn)<nt - g1 DO DD (e 2)

2
2
%‘L) moves.

It remains to show that it is possible for the game to last exactly (

Construction. Suppose we have decks A = {aj,az,...,a,},B = {b1,bs,...,b,} with the
following relations:

* (ai,b;) is a good pair if and only if i + j = n + 1.

* (a;,b;) is a nasty pair if and only if i + j = n.



* (a;,b;) is a bad (but not nasty) pair if and only if i + j ¢ {n,n + 1} and for all such
pairs, a; is the winner of the duel.

Let m,, denote the number of moves the process described above lasts (set m,, = oo if

2
the process is not a game). We shall prove that m,, = w The base case n = 1 is clear,
so we proceed by induction on n > 1 assuming the statement holds for each 1 < k < n.

Notice that for any ¢ < n, after i(n — 1) moves, the decks are (from top to bottom)

A={aiy1,...,an,a1,...,a;},B={by_it1,...bn,b1,...,b,_;}. Thus, after (n — 1)?> moves have
happened, the decks are A = {a,,a1,...,a,_1} and B = {bs,bs,...,b,,b;} and finally after
another n — 1 moves we reach A = {a,,a1,...,a,—1} and B = {by,bs,...,b,}. Now (a,,b;) is

a good pair hence removed from play.

Thus after (n —1)? + (n — 1) + 1 = n? — n + 1 moves, we reach the state with decks
of size n — 1 labelled A = {a1,...,a,-1} and B = {bs,bs,...,b,}. If we now relabel each
bi with b;_1, the relations between the (a,b) pairs described above correspond to the
same relations described in case of decks of size n — 1. The induction hypothesis yields

mp =n?>—n+1+m,_; as desired. O

Hence, when n = 40, the maximum time a game lasts equals g5-12J%2 = 356 hours. [
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