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Official Solutions

Problem 1. Let x1, x2, x3, . . . be a sequence of positive integers defined as follows: x1 = 1
and for each n ⩾ 1 we have

xn+1 = xn + ⌊
√
xn⌋.

Determine all positive integers m for which xn = m2 for some n ⩾ 1. (Here ⌊x⌋ denotes the
greatest integer less or equal to x for every real number x.)

Solution. We claim that m satisfies the condition if and only if m = 2k for some integer
k ⩾ 0.

The first few terms of (xn)n⩾1 are 1 , 2, 3, 4 , 6, 8, 10, 13, 16 , 20, 24, 28, 33, 38, 44, 50, 57, 64 , . . .
so we know the claim is true for m ⩽ 8. Let k ⩾ 3 be a positive integer for which there
exists a t such that xt = 4k. It suffices to show that the first term in the sequence (xn)n>t

which is a perfect square equals 4k+1. Define the sequences (an)n⩾1, (bn)n⩾1 as an = ⌊√xn⌋
and bn = xn − a2n for each n. Clearly, xn = a2n + bn with 0 ⩽ bn ⩽ 2an for each n ⩾ 1. We keep
track of the pairs (an, bn) for n > t until we reach a square.

Claim. For any positive integer n, we have

(an+2, bn+2) =


(an, 2an) if bn = 0

(an + 1, bn − 1) if 0 < bn ⩽ an

(an + 1, bn) if an < bn ⩽ 2an

Proof. We consider each of the three cases as below:

• Suppose bn = 0, then xn = a2n so xn+1 = a2n + an and xn+2 = a2n + 2an < (an + 1)2 hence
bn+2 = 2an and an+2 = an.

• Suppose 0 < bn ⩽ an, then

xn+1 = xn + an = a2n + an + bn ⩽ a2n + 2an < (an + 1)2 =⇒ an+1 = an and bn+1 = an + bn

so

xn+2 = xn+1 + an+1 = a2n + (2an + bn) = (an + 1)2 + (bn − 1) ∈ [(an + 1)2, (an + 2)2 − 1]

hence an+2 = an + 1 and bn+2 = bn − 1.

• Finally, suppose bn > an, then xn+1 = xn + an = a2n + an + bn = (an + 1)2 + (bn − an − 1)
so bn+1 = bn − an − 1 and an+1 = an + 1, hence

xn+2 = xn+1 + an+1 = xn + 2an + 1 = (an + 1)2 + bn < (an + 2)2

so bn+2 = bn and an+2 = an + 1. This proves the claim.

Now xt = 4k, so xt+1 = 4k+2k and xt+2 = 4k+2 ·2k so (2k)2 = xt < xt+1 < xt+2 < (2k+1)2.
We claim that for each 1 ⩽ j ⩽ 2k we have bt+2j−1 = 2k − (j − 1) and bt+2j = 2k+1 and

at+2j−1 = at+2j = 2k + j − 1. We will proceed by induction on j ⩾ 1. The base case j = 1
is true from the above reasoning. Suppose that the claim holds for some j < 2k, then we
know by combining the induction hypothesis and the previous claim that

0 < 2k − (j − 1) = bt+2j−1 ⩽ 2k = at ⩽ at+2j−1 =⇒ bt+2j+1 = bt+2j−1 − 1 = 2k − j

at+2j = at + j − 1 = 2k + (j − 1) < 2k+1 = bt+2j < 2at+2j =⇒ bt+2j+2 = bt+2j = 2k+1

0 ̸∈ {bt+2j−1, bt+2j} =⇒ at+2j+1 = at+2j−1 + 1 = 2k + j and at+2j+2 = at+2j + 1 = 2k + j

completing the induction step.
Since bℓ ̸= 0 for all t < ℓ < t + 2k + 1 we know that none of xt+1, . . . , xt+2k are perfect

squares. Now bt+2k+1−1 = 2k − (2k − 1) = 1 hence bt+2k+1+1 = bt+2k+1−1 − 1 = 0 so xt+2k+1+1

is a perfect square. Also, at+2k+1−1 = 2k + 2k − 1 = 2k+1 − 1 and bt+2k+1−1 ̸= 0 hence
at+2k+1+1 = at+2k+1−1 + 1 = 2k+1.

Thus, xt+2k+1+1 = 4k+1 is the next perfect square in (xn)n>t as desired.
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Problem 2. Let f : N → N be a function satisfying the following condition: for each
k > 2026, the number f(k) equals the maximum number of times a number appears in
the list f(1), f(2), . . . , f(k − 1). Prove that f(n) = f(n+ f(n)) for infinitely many n ∈ N.

(Here N denotes the set {1, 2, 3, . . . } of positive integers.)

Solution. Let S = {f(1), f(2), f(3) . . . } be the set of all possible values taken by f . We
make the following claims:

Claim 1. For each k > 2026, we have f(k + 1) = f(k) or f(k + 1) = f(k) + 1.

Proof. Indeed, the maximum frequency of an element in f(1), f(2), . . . , f(k) is at least as
much as the maximum frequency of an element in f(1), f(2), . . . , f(k−1) and the increment
is 1 if and only if f(k) equals an element with this maximum frequency.

Claim 2. The set S is infinite.

Proof. Assume to the contrary. By Claim 1, f is non-decreasing, so the assumption
implies f will be eventually constant. Thus, there exist positive integers N, c such that
f(n) = c for all n > N . Now f(N +1) = f(N +2) = · · · = f(N + c+1) = c so the frequency of c
in f(1), f(2), . . . , f(N + c+1) is at least c+1, hence f(N + c+2) ⩾ c+1, a contradiction!

Let T = S \ {f(1), f(2), . . . , f(2027)} and for each n ∈ T , let xn be the smallest positive
integer with f(xn) = n.

Claim 3. We have f(xn) = f(xn + f(xn)) = n for each n ∈ T .

Proof. Let n ∈ T and t be the element with the maximum frequency in the list
f(1), f(2), . . . , f(xn − 1).

Note that t occurs precisely n times in this list of numbers, since f(xn) = n. Note that
n does not occur in the list f(1), f(2), . . . , f(xn − 1) by the minimality of xn. So t ̸= n.

We will prove by induction that 0 ⩽ i ⩽ n =⇒ f(xn + i) = n. This is true for i = 0, so we
show that f(xn + i) = n =⇒ f(xn + i+ 1) = n for all i < n, which suffices.

Indeed, the element t has frequency n in the list f(1), f(2), . . . , f(xn), . . . , f(xn + i) and
the element n, which occurs for the first time at f(xn) and equals f(xn + j) for each
j ⩽ i, occurs only i + 1 times. Thus, the maximum frequency of an element in the list
f(1), f(2), . . . , f(xn), . . . , f(xn + i) is n, hence f(xn + i+ 1) = n completing the induction.

Since T is infinite by Claim 2, by Claim 3 we have infinitely many positive integers n
with f(n) = f(n+ f(n)), namely, n = xm for m ∈ T .

Remark. Eventually, the sequence becomes

. . . t, t, . . . , t︸ ︷︷ ︸
t+1 times

t+ 1, t+ 1, . . . , t+ 1︸ ︷︷ ︸
t+2 times

t+ 2, t+ 2, . . . , t+ 2︸ ︷︷ ︸
t+3 times

. . .
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Problem 3. Let ABC be an acute-angled scalene triangle with circumcircle Γ. Let M be
the midpoint of BC and N be the midpoint of the minor arc B̂C of Γ. Points P and Q lie
on segments AB and AC respectively such that BP = BN and CQ = CN . Point K ̸= N
lies on line AN with MK = MN . Prove that ∠PKQ = 90◦.

Solution. Reflect N in M to obtain L. Note that MK = MN = ML =⇒ ∠LKN = 90◦.
Since BP = BN = BL and CQ = CN = CL and

∠LBA+ ∠LCA = ∠BLC − ∠BAC = ∠BNC − ∠BAC = (180◦ − 2∠BAC),

we have

∠BLP + ∠CLQ =

(
90◦ − 1

2
∠LBA

)
+

(
90◦ − 1

2
∠LCA

)
= 180◦ − 1

2
(∠LBA+ ∠LCA)

= 180◦ − 1

2
(180◦ − 2∠BAC)

= 90◦ + ∠BAC.

Thus

∠PLQ = 360◦ − ∠BLC − (∠BLP + ∠CLQ) = 360◦ − (180◦ − ∠BAC)− (90◦ + ∠BAC) = 90◦.

Now BN = CN =⇒ BP = CQ and so
−−→
BP,

−−→
CQ are vectors with equal magnitude.

Hence the vector
−−→
BP +

−−→
CQ is parallel to the internal bisector of angle ∠BAC. Let R be the

midpoint of PQ, then
−−→
MR = 1

2

(−−→
BP +

−−→
CQ

)
so MR ∥ AN . Thus, the reflection T of L in R

lies on line AN as MN = ML.
Now ∠PLQ = 90◦ so LT is the diameter of the circumcircle of triangle PLQ. Since

∠LKN = 90◦ and T lies on KN , we conclude that ∠LKT = 90◦, hence K lies on the circle
with diameter TL. Thus K lies on the circumcircle of triangle PLQ so ∠PLQ = 90◦ =⇒
∠PKQ = 90◦ as desired.

A

B

C

N

L

P

Q

M

K

R

T
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Problem 4. Two integers a and b are called companions if every prime number p either
divides both or none of a, b. Determine all functions f : N0 → N0 such that f(0) = 0 and
the numbers f(m) + n and f(n) +m are companions for all m,n ∈ N0.

(Here N0 denotes the set of all non-negative integers.)

Solution 1. We prove the following claim.

Claim. Let p be a prime number that divides f(x)− f(y), then p divides x− y.

Proof. Let n > 0 be a sufficiently large integer such that z = np − f(x) > 0. Then
p | f(x) + z =⇒ p | x+ f(z) and likewise

f(y) + z = −(f(x)− f(y)) + (f(x) + z) ≡ 0 (mod p)

hence p | y + f(z). Together we get

x− y = (x+ f(z))− (y + f(z)) ≡ 0 (mod p)

as desired.
Thus every prime factor p of f(x + 1) − f(x) divides 1, so it must be the case that for

each x ⩾ 0 we have f(x+ 1)− f(x) ∈ {−1, 1}.
Note that f(x) = f(x + 2) =⇒ 3 | f(x + 2) − f(x) =⇒ 3 | (x + 2) − x which is clearly

impossible. Thus, f(x+ 1)− f(x) = f(x+ 2)− f(x+ 1) for all x ⩾ 0 hence f(x+ 1)− f(x) is
a constant for all x ⩾ 0. Since f only takes non-negative values, this constant must be 1
hence f(x+ 1) = f(x) + 1 for all x ⩾ 0 so f(x) = x for all x ∈ N.

Solution 2. Notice that f(x) = x for all x ∈ N0 is a solution as both f(m)+n and f(n)+m
equal to m + n for each m,n ⩾ 0. We claim that this is the only function which satisfies
the above condition. Let us denote the statement as

P (x, y) : f(x) + y and x+ f(y) are companions.

Plug y = 0 to conclude that f(x) and x have the same set of prime divisors for each
x ⩾ 1. In particular, f(2k) is a power of 2 (other than 1) for all k ⩾ 1 and f(1) = 1. Further,
let g(k) denote the positive integer for which f(2k) = 2g(k). Plug x = 2g(k) and y = 2k to
conclude

2g(g(k)) + 2k and 2g(k) + 2g(k) are companions

hence 2g(g(k)) + 2k is a power of 2. Now 2|g(g(k))−k| + 1 divides 2g(g(k)) + 2k, so if g(g(k)) ̸= k,
then 2|g(g(k))−k| + 1 is odd and greater than 1, which is absurd.

So we must have g(g(k)) = k for each k > 0. Thus, g is a bijection on positive integers, as
clearly g is surjective and for any a, b ∈ N, we have g(a) = g(b) =⇒ a = g(g(a)) = g(g(b)) = b,
hence it is injective as well. Now plug x = 2g(a) and y = 2b to get 2a +2b and 2g(a) +2g(b) are
companions. Suppose b = a+ 2, we conclude that 2|g(a+2)−g(a)| + 1 must be a power of 5.

Claim 1. The equation 2x + 1 = 5y has (2, 1) as the only positive integer solution.

Proof. Indeed, taking the equation modulo 5 gives x ≡ 2 (mod 4) as 2x ≡ 4 mod 5. Taking
it modulo 3, we get (−1)y ≡ (−1)x + 1 ≡ 2 (mod 3) hence y is odd. Now

2x = 5y − 1 = (5− 1) · (5y−1 + 5y−2 + · · ·+ 51 + 1)

but 5y−1+ · · ·+51+1 is odd since y is odd, hence y = 1 and x = 2 is the only possibility.
By Claim 1, we know that g(a+2) ∈ {g(a)− 2, g(a)+2} for each a ⩾ 1. However, g is also

bijective, so g(a + 2) = g(a) − 2 =⇒ g(a + 4) = g(a) − 4 else g(a + 4) = g(a + 2) + 2 = g(a),
which would yield a contradiction.

Similarly, we can conclude that g(a + 2m) = g(a) − 2m for each m ⩾ 1, however, g only
takes positive values so this will fail to hold for m > g(a). This forces g(a+ 2) = g(a) + 2 for
each a ∈ N. Together with the fact that g is a bijection, we conclude that {g(1), g(2)} = {1, 2}
and g(n+ 2) = g(n) + 2 for each n ⩾ 1.

Finally, f(2) + 1 and 2 + f(1) = 3 are companions, so f(2) = 22 = 4 is impossible, hence
f(2) = 2 and f(4) = 4, so g(n) = n for all n ⩾ 1. In particular, f(2k) = 2k for each k ⩾ 1.

We will prove the two claims below before finishing the proof.
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Claim 2. Let p be an odd prime and m be a positive integer with p | 2m − 1. For each
k ⩾ 0 we have

pk | 2
pkm − 1

2m − 1
.

Proof. The case k = 0 is obvious, so we proceed by induction on k ⩾ 0. Now

2p
k+1m − 1

2m − 1
=

2p
k+1m − 1

2pkm − 1
· 2

pkm − 1

2m − 1

and

2p
k+1m − 1

2pkm − 1
=

(
(2p

km)p−1 + (2p
km)p−2 + · · ·+ (2p

km) + 1
)
≡ 1 + 1 + · · ·+ 1︸ ︷︷ ︸

p times

≡ 0 (mod p)

implies that if the statement is true for any value of k, it is true for k + 1 as well. This
completes the induction step.

For each prime p and natural number n, let vp(n) denote the largest integer j such that
pj | n.

Claim 3. Fix y ⩾ 1. Infinitely many prime numbers p exist such that for some n > 0, we
have p | 2n + y.

Proof. Assume without loss of generality that y is odd, by focusing only on n > v2(y).
Assume to the contrary that only finitely many such primes p exist and enumerate them
as 2 < p1 < p2 < · · · < pk. Let ℓ ⩾ 1 be a positive integer that we will choose later
and let M = (p1 · · · · · pk)ℓ and N = M · ϕ(M) where ϕ denotes the Euler-totient function.
By Euler’s Theorem, we have pi | M | 2ϕ(M) − 1 | 2N − 1 for each 1 ⩽ i ⩽ k. Choose
ℓ > 1 + max(vpi

(y + 1) | 1 ⩽ i ⩽ k). Notice that

2N + y = (2N − 1) + (y + 1)

and vpi(2
N − 1) > vpi(y + 1) for each 1 ⩽ i ⩽ k by Claim 2, hence vpi(2

N + y) = vpi(y + 1)
for each i. However, 2N + y > y + 1, so it must have a prime factor outside of p1, p2, . . . , pk,
yielding the desired contradiction!

Plug x = 2n to see that 2n + y and 2n + f(y) are companions for each n ⩾ 1 and y ⩾ 1.
Choose n such that for some prime p > |f(y) − y|, we have p | 2n + y. This is possible due
to Claim 3. Now p | 2n + y and so p | 2n + f(y) =⇒ p | f(y)− y. This is only possible when
f(y) = y. Together with f(0) = 0, we conclude that f(x) = x for all x ∈ N0.

Remark. The following theorems are popular in Olympiad number theory and can be
used to simplify each of the above claims.

1. Claim 1 can be resolved by Zsigmondy’s Theorem which states: For all positive
integers a,m, n with m < n, the number an+1 has a prime factor that does not divide
am + 1 with the exception of a = 2,m = 1, n = 3.

2. Claim 2 can be resolved by Exponent Lifting Lemma (LTE) which states: For any
odd prime p and positive integers a, b, n with p | a− b, we have

vp(a
n − bn) = vp(n) + vp(a− b).

3. Claim 3 can be resolved by Kobayashi’s Theorem which states: Let M be an infinite
set of positive integers and c be a positive integer. If the set of prime numbers p such
that p | m for some m ∈ M is finite, then the set of primes q such that q | m + c for
some m ∈ M is infinite.
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Problem 5. Three lines ℓ1, ℓ2, ℓ3 form an acute angled triangle T in the plane. Point P
lies in the interior of T . Let τi denote the transformation of the plane such that the image
τi(X) of any point X in the plane is the reflection of X in ℓi, for each i ∈ {1, 2, 3}. Denote
by Pijk the point τk(τj(τi(P ))) for each permutation (i, j, k) of (1, 2, 3).

Prove that P123, P132, P213, P231, P312, P321 are concyclic if and only if P coincides with the
orthocentre of T .

Solution. Suppose lines ℓ2 and ℓ3 intersect at point A1, define the points A2 and A3

analogously. Without loss of generality, suppose A1, A2, A3 occur in counter-clockwise
order on the circumcircle of T . For all points X in the plane of T , let Xij = τj(τi(X)) and
Xk = τk(X) for 1 ⩽ i, j, k ⩽ 3. Let Bi = τi(Ai) for each i ∈ {1, 2, 3}.

We prove the following claims for all points X in the plane with X ̸∈ {A1, B1, A2, B2, A3, B3}.
The variants of each claim are valid when the indices are cyclically permuted. Note that
lines AiXi and BiXi are well-defined for each i ∈ {1, 2, 3} due to X not coinciding with
these six points.

Claim 1. A1X23 = A1X32 = A1X and ∠X32A1X = ∠XA1X23 = 2∠A2A1A3.

Proof. Denote by ∠ABC the counter-clockwise oriented angle between rays
−−→
BA,

−−→
BC

modulo 360◦.
Note that A1X = A1X2 = A1X3 so A1X32 = A1X2 = A1X and A1X23 = A1X3 = A1X.
Angle chasing yields

∠X32A1X = ∠X32A1A2 + ∠A2A1X

= ∠A2A1X2 + ∠A2A1X (since X2, X32 are reflections in A1A2)

= ∠A2A1A3 + ∠A3A1X2 + ∠A2A1X

= ∠A2A1A3 + ∠XA1A3 + ∠A2A1X (since X2, X are reflections in A1A3)

= 2∠A2A1A3

as desired. Similarly, ∠XA1X23 = 2∠A2A1A3 and the claim follows.

A2 A3

A1

X

X2

X32

X3

X23

Claim 2. Line A1X1 is the perpendicular bisector of X231X321.

Proof. By Claim 1 applied to point X1, we conclude A1X231 = A1X1 = A1X321 and
△X231A1X1

∼= △X1A1X321 since both are A1-isosceles triangles, with apex angle at ver-
tex A1 equal to 2∠A2A1A3. Thus X1 is equidistant from X231, X321 and hence A1, X1 both
lie on the perpendicular bisector of X231X321, proving the claim.

Claim 3. Line B1X1 is the perpendicular bisector X132X123.
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Proof. By Claim 1, line A1X is the perpendicular bisector of X32X23. Reflecting in ℓ1, we
conclude that line B1X1 is the perpendicular bisector of X132X123, as desired.

A2 A3

A1

X

X132

X123

X1

X321

X231

B1

( =⇒ ) Suppose all six points P123, P132, P213, P231, P312, P321 lie on a circle denoted Γ with
centre denoted O that for some point P in the interior of T . Since P is in the interior of
T , we know that P ̸∈ {A1, B1, A2, B2, A3, B3}, so each of the above claims applies to P .

By Claims 2 and 3, we conclude that the lines A1P1 and B1P1 are perpendicular bi-
sectors of the chords P231P321 and P132P123 of Γ respectively. Lines A1P1 and B1P1 must
coincide or P1 is the center of Γ. Now A1P1 and B1P1 coincide if and only if A1P ⊥ ℓ1.

By cyclically permuting the indices, we conclude that

Pi = O or AiPi ⊥ ℓi for each i ∈ {1, 2, 3}.

Now P1, P2, P3 are pairwise distinct, so for at least two indices i, we must have AiP ⊥ ℓi,
and so P is the intersection of two of the altitudes of T , hence P coincides with the
orthocentre of T .

( ⇐= ) Suppose P is the orthocentre of T . Since T is acute-angled, P is in the interior
of T hence all claims apply to P . Thus, P,Ai, Bi, Pi are collinear for each i ∈ {1, 2, 3}. By
Claims 2 and 3 and all their cyclic variants, we conclude that P is equidistant from Pijk

and Pjik, and that P is equidistant from Pijk and Pikj, for each permutation ijk of 1, 2, 3.
Since all permutations of 1, 2, 3 can be achieved by performing transpositions ijk 7→ ikj

and ijk 7→ jik, we conclude that P is equidistant from each of P123, P132, P213, P231, P312, P321,
proving that the six points all lie on a circle with center P .
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Problem 6. Two decks A and B of 40 cards each are placed on a table at noon. Every
minute thereafter, we pick the top cards a ∈ A and b ∈ B and perform a duel.

For any two cards a ∈ A and b ∈ B, each time a and b duel, the outcome remains the
same and is independent of all other duels. A duel has three possible outcomes:

• If a card wins, it is placed back at the top of its deck and the losing card is placed at
the bottom of its deck.

• If a and b are evenly matched, they are both removed from their respective decks.

• If a and b do not interact with each other, then both are placed at the bottom of their
respective decks.

The process ends when both decks are empty. A process is called a game if it ends.
Prove that the maximum time a game can last equals 356 hours.

Solution. Let M(n) denote the maximum number of moves a game can last with the
initial decks A,B consisting of n cards each. We shall prove by strong induction on n ⩾ 1

that M(n) = n(n2+2)
3 . The base case n = 1 is clear, so assume that M(k) = k(k2+2)

3 for
k = 1, 2, . . . , n− 1. We shall prove the claim for M(n) now.

Estimation. We will prove the bound M(n) ⩽ M(n − 1) + (n2 − n + 1). Consider a game
as below.

Let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} be all the cards labelled from top to
bottom in each deck. Call a pair (ai, bj) good if ai and bj are evenly matched, and otherwise
call it bad. We call a bad pair (ai, bj) nasty if ai and bj do not interact with each other.

Given that the game ends with both decks empty, it is possible to assign to each ai a
unique bj for which (ai, bj) is a good pair, since there was a moment when the card ai was
removed from its deck along with a card in B.

Thus, there are at least n good pairs among a total of n2 pairs (a, b) ∈ A × B. Thus, at
most n2 − n bad pairs exist in A× B. Enumerate the pair of cards (a, b) ∈ A× B at the top
of their decks at every minute by the sequence P1, P2, P3, . . . and let r denote the smallest
positive integer such that Pr+1 is a good pair. Each of the pairs P1, . . . , Pr is bad.

If r ⩾ n2 − n + 1, then by the Pigeonhole Principle, for some 1 ⩽ i < j < r, we have
Pi = Pj as there are at most n2 − n bad pairs. However, notice that for any bad pair (a, b),
when the duel occurs between a, b and one or both of them are placed at the bottom of
their respective decks, the relative cyclic order of the cards in each deck is preserved. This
means that if the pair (a, b) ever appears again at the top of both decks, the two decks
are placed identically to the previous instant in which this happened. Thus, Pi = Pj

implies that the decks A,B are arranged exactly the same way at the i-th minute and the
j-th minute respectively, so Pi+k = Pj+k for all k ⩾ 0, and the process becomes periodic,
hence all configurations after the j-th minute have occured previously in the game. But
since no cards have been removed from play by the j-th minute, the sequence of duels
never yields a good pair and so no cards are ever removed from play and the game never
actually ends, a contradiction!

This proves that r ⩽ n2 − n hence after r + 1 moves, we are down to two decks of n− 1
cards each. The game thereafter can last at most M(n− 1) moves, so the total number of
moves the game lasted equals r+ 1+M(n− 1) ⩽ (n2 − n+ 1) +M(n− 1). Since this is true
for any game with decks of size n, we conclude that M(n) ⩽ n2 − n +M(n − 1). Together
with the induction hypothesis, we have

M(n) ⩽ n2 − n+ 1 +
(n− 1)((n− 1)2 + 2)

3
=

n(n2 + 2)

3
.

It remains to show that it is possible for the game to last exactly n(n2+2)
3 moves.

Construction. Suppose we have decks A = {a1, a2, . . . , an},B = {b1, b2, . . . , bn} with the
following relations:

• (ai, bj) is a good pair if and only if i+ j = n+ 1.

• (ai, bj) is a nasty pair if and only if i+ j = n.
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• (ai, bj) is a bad (but not nasty) pair if and only if i + j ̸∈ {n, n + 1} and for all such
pairs, ai is the winner of the duel.

Let mn denote the number of moves the process described above lasts (set mn = ∞ if
the process is not a game). We shall prove that mn = n(n2+2)

3 . The base case n = 1 is clear,
so we proceed by induction on n ⩾ 1 assuming the statement holds for each 1 ⩽ k < n.

Notice that for any i < n, after i(n − 1) moves, the decks are (from top to bottom)
A = {ai+1, . . . , an, a1, . . . , ai},B = {bn−i+1, . . . bn, b1, . . . , bn−i}. Thus, after (n− 1)2 moves have
happened, the decks are A = {an, a1, . . . , an−1} and B = {b2, b3, . . . , bn, b1} and finally after
another n− 1 moves we reach A = {an, a1, . . . , an−1} and B = {b1, b2, . . . , bn}. Now (an, b1) is
a good pair hence removed from play.

Thus after (n − 1)2 + (n − 1) + 1 = n2 − n + 1 moves, we reach the state with decks
of size n − 1 labelled A = {a1, . . . , an−1} and B = {b2, b3, . . . , bn}. If we now relabel each
bk with bk−1, the relations between the (a, b) pairs described above correspond to the
same relations described in case of decks of size n − 1. The induction hypothesis yields
mn = n2 − n+ 1 +mn−1 as desired.

Hence, when n = 40, the maximum time a game lasts equals 1
60 ·

40×1602
3 = 356 hours.

———00000———
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