Regional Mathematical Olympiad - 2025

Time: 3 hours November 16, 2025

Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- All questions carry equal marks. Maximum marks: 102.
- No marks will be awarded for stating an answer without justification.
- Answer all the questions.
- Answer to each question should start on a new page. Clearly indicate the question number.
- 1. (a) Let $n \geq 3$ be an integer. Find a configuration of n lines in the plane which has exactly
 - (i) n-1 distinct points of intersection;
 - (ii) n distinct points of intersection;
 - (b) Give configurations of n lines that have exactly n+1 distinct points of intersection for (i) n=8 and (ii) n=9.
- 2. Let a, b, c be distinct nonzero real numbers satisfying

$$a + \frac{2}{b} = b + \frac{2}{c} = c + \frac{2}{a}.$$

Determine the value of $|a^2b + b^2c + c^2a|$.

- 3. Let Ω and Γ be circles centred at O_1, O_2 respectively. Suppose that they intersect in distinct points A, B. Suppose O_1 is outside Γ and O_2 is outside Ω . Let ℓ be a line not passing through A and B that intersects Ω at P, R and Γ at Q, S so that P, Q, R, S lie on the line in this order. Furthermore, the points O_1, B lie on one side of ℓ and the points O_2, A lie on the other side of ℓ . Given that the points A, P, Q, O_1 are concyclic and B, R, S, O_2 are concyclic as well, prove that AQ = BR.
- 4. Prove that there do not exist positive rational numbers x and y such that

$$x + y + \frac{1}{x} + \frac{1}{y} = 2025.$$

- 5. Let ABC be an acute-angled triangle with AB < AC, orthocentre H and circumcircle Ω . Let M be the midpoint of minor arc BC of Ω . Suppose that MH is equal to the radius of Ω . Prove that $\angle BAC = 60^{\circ}$.
- 6. Let p(x) be a nonconstant polynomial with integer coefficients, and let $n \geq 2$ be an integer such that no term of the sequence

$$p(0), p(p(0)), p(p(p(0))), \dots$$

is divisible by n. Show that there exist integers a, b such that $0 \le a < b \le n-1$ and n divides p(b) - p(a).