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Problem 1. Consider the sequence defined by a1 = 2, a2 = 3, and

a2k+2 = 2 + ak + ak+1 and a2k+1 = 2 + 2ak

for all integers k ⩾ 1. Determine all positive integers n such that an

n is an integer.

Answer.
an
n

∈ N if and only if n+ 1 = 2r for some positive integer r ≥ 1.

Solution 1. We first show that if an

n ∈ N then it must equal 2. Before we do that we
rewrite the recurrence as follows for convenience:

a2k+1 = 2 + 2ak (1)

a2k = 2 + ak + ak−1 (2)

where (1) holds for k ≥ 1 and (2) for k ≥ 2. Consequently,

a2k+1 − a2k = ak − ak−1 (3)

a2k − a2k−1 = ak − ak−1 (4)

holds for all k ≥ 2. Now, we are ready to prove two observations from the above equations:

(a) Observation 1: an is even if and only if n is odd.

Proof. Observe that a1 = 2, and for all k ≥ 1, we have

a2k+1 = 2ak + 2

and thus an is even whenever n is odd. Thus, we just need to prove that a2k is odd
for all k ≥ 2 since a2 = 3 is already odd.

Now, if we have proven that for all 1 ≤ i < 2k − 1, ai and ai+1 have opposite parities.
Thus,

a2k ≡ ak + ak−1 ≡ 1 (mod 2)

Thus, a2k+2 is also odd and our inductive claim follows!

(b) Observation 2: ak − ak−1 ∈ {1, 3} for all k ≥ 2.

Proof. Observe that by repeatedly using (3) and (4), we have that

ak − ak−1 ∈ {a3 − a2, a2 − a1} = {6− 3, 3− 2} = {1, 3}.

In particular, an ≤ 3(n − 1) < 3n, so an

n < 3. Thus, if it is an integer, an/n ∈ {1, 2}. But by
(a) above, it follows that an ̸= n, so if an/n ∈ N then an/n = 2 as claimed above. Again, by
(a), it follows that n is odd.

Definition: We say an integer n > 1 is good, if an−1 = 2n− 2.
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Claim 1: If k > 2 is an even integer then k is good if and only if k
2 is good.

Proof. From the above part, we know that k must be even for it to be good. Now, let k = 2j:

k is good ⇐⇒ 2k − 2 = 2 + 2aj−1 ⇐⇒ 2k − 4 = 2aj−1 ⇐⇒ 2j − 2 = aj−1 ⇐⇒ j is good

Claim 2: k > 1 is good if and only if k is a power of 2.

Proof. If k = 2r · s where s > 1 and odd then we have that k is good if and only if s is good
but s is odd and thus cannot be good. Similarly, if k = 2r then it’s good if and only if k = 2
is good which is indeed true. Thus, k is good if and only if k is a power of 2.

Thus, we can conclude that

n | an ⇐⇒ n+ 1 is good ⇐⇒ n+ 1 = 2r for some integer r ≥ 1

This means that n | an if and only if n+ 1 is a power of 2.

Solution 2.

Claim. n < an ≤ 2n for all n with equality iff n is one less than a power of 2.

Proof. We will prove the claim via induction. Observe that it is clearly true for the bases
cases i.e. n = 1 and n = 2. Now, otherwise, a2k+2 = 2 + ak + ak+1 inductively we have

2k + 2 < 2 + k + k + 1 < 2 + ak + ak+1 ≤ 2 + 2k + 2(k + 1) = 2(2k + 2)

Observe since k and k+1 cannot both be one less than powers of 2, the final inequality is
indeed strict. Similarly a2k+1 = 2ak + 2, thus

2k + 1 < 2k + 2 < 2ak + 2 ≤ 2(2k + 1).

The final inequality is actually an equality iff k = 2t − 1 for some t, which is equivalent to
2k + 1 = 2t+1 − 1.

Thus, we get that an

n is an integer iff n is one less than a power of 2.
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Problem 2. Let n ≥ 2 be a positive integer. The integers 1, 2, · · · , n are written on a board.
In a move, Alice can pick two integers written on the board a ̸= b such that a + b is an
even number, erase both a and b from the board and write the number a+b

2 on the board
instead. Find all n for which Alice can make a sequence of moves so that she ends up
with only one number remaining on the board.
Note. When n = 3, Alice changes (1, 2, 3) to (2, 2) and can’t make any further moves.

Answer. Alice can make a sequence of moves so that she ends up with only one number
remaining on the board for all positive integers n other than 2, 3, 4, and 6.

We say that Alice wins for an integer n if there is a sequence of moves that she can
make so that she ends up with only one number remaining on the board when she had
started with 1, 2, . . . , n on the board. Otherwise, we say Alice loses for the integer n.

The following three solutions show that Alice can win when n ̸= 2, 3, 4, 6. The fact that
Alice cannot win in these 4 cases is shown separately at the end. We use multi-sets to
denote configurations on the board. We draw c1 7→ c2 if Alice can go from configuration
c1 to configuration c2 in one move and c1 7−→ c2 if she can reach c2 in some sequence of
moves. Also, let [m] = {1, 2, · · ·m} for all naturals m.

Alice can ensure that only one number remains when n ̸= 2,3,4,6:

Solution 1. For any n ≥ 2, we have [n− 1]∪{n+1} 7→ [n− 2]∪{n}, thus, by repeating the
above, for any n ≥ 3, we have [n− 2] ∪ {n} 7−→ {2}. Thus, for any n ≥ 5, we have

[n] = ([n− 3] ∪ {n− 1}) ∪ {n− 2, n} 7−→ {2, n− 2, n}

Now, if n ̸= 6, then these 3 numbers are not in an AP. Now, if

• n is odd: {2, n− 2, n} 7→ {2, n− 1} and both the numbers are even and Alice ends up
with exactly one number for all odd n ≥ 5.

• n is even: Atleast one of n and n+ 2 is divisible by 4. Thus, Alice can make a move
such that both the numbers on the board are even and can end up with one final
number as long as n− 2 ̸= n+2

2 . This only happens when n = 6. Thus, Alice can end
up with exactly one number for all even n ≥ 8.

Solution 2. Before beginning the solution, we have the following two lemmas:

Lemma 1. If Alice can win for a number n such that the final number of on the board is
1 ≤ m ≤ n, then she can also win for the number n such that the final number is n+1−m.

Proof. Alice can follow the strategy that she used to reach m but in reverse. More con-
cretely, in the j th move: if Alice had earlier played (a, b) 7→ (c), she can now make the
move (n+ 1− a, n+ 1− b) 7→ (n+ 1− c).

Since, initially we have (1, 2, · · ·n) = (n+ 1− 1, n+ 1− 2, · · ·n+ 1− n), she can always play
as described above. Thus, the final number on the board would now be n+ 1−m.

Lemma 2: If Alice can reach the final number m when starting with (1, · · · , n) then she
can reach the final number m + t if she starts with (t + 1, t + 2, · · · t + n) for any positive
integer t.

Proof. Alice can follow the same strategy that she had earlier but shifted by t. So, in the
jth move: if Alice had earlier played (a, b) 7→ (c), she can now make the move by t as:
(a+ t, b+ t) 7→ (c+ t) and this is always possible.

Now, we begin the main solution: First observe that for any odd n > 3, we have the
following process:

(1, 2, . . . , k, k + 2, n− 1) 7→ (1, 2, . . . , k − 1, k + 1, n− 1) 7→ · · · 7→ (2, n− 1) 7→
(
n+ 1

2

)
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Letting k = n− 2 gives us that Alice wins for n.

Now, let n = 4k for some k > 1. If we divide 4k into two parts of 4k − 1 and 1, then the first
4k − 1 numbers leave 2k by the previous argument and the second part is just 4k i.e.

(1, 2, . . . , 4k − 1, 4k) 7−→ (2k, 4k) 7→ (3k)

Thus, Alice also wins if the number on the board is 4k and can end up with the number
3k on the board. Similarly, Alice can also choose to end up with the number k + 1 on the
board.

Now, let n = 8k + 2, for k > 0. Then, dividing into the last 8k numbers and the first 2
numbers, we get

(1, . . . , 8k + 2) 7→ (1, 2, 6k + 2) 7→ (1, 3k + 2)

and Alice wins if k is odd. Now, alternately,

(1, . . . , 8k + 2) 7→ (1, 2, 2k + 3) 7→ (2, k + 2)

and Alice wins if k is even.

Thus, Alice wins for all numbers of the form 8k + 2. Now, for numbers of the form 8k + 6,
we repeat the previous trick:

(1, . . . , 8k + 6) 7→ (1, 2, 6k + 5) 7→ (2, 3k + 3)

and Alice wins if k is odd. Similarly, for k even, we get

(1, . . . , 8k + 6) 7→ (1, 2, 2k + 4) 7→ (1, k + 3)

and Alice wins. Thus, all the cases are covered and Alice wins for all n > 6 and n = 5.

Solution 3. Let T be the set of n for which Alice has a winning strategy. Also, for any
t ∈ T , let St = {s | [t] 7−→ {s}}.

We extend the game to allow n = 1 and declare that Alice wins by making no moves. Thus,
1 ∈ T and S1 = {1}.

Lemma 1. If x ∈ T and y ∈ Sx then x+ 1− y ∈ Sx as well.

Proof. Alice can follow the strategy that she use to reach y but in reverse i.e. if she used
to make a move (a, b) 7→ (c), she can instead do (x+1− a, x+1− b) 7→ (x+1− c) and finally
she will be left with x+ 1− y as desired.

Lemma 2. If x, 2y ∈ T , then x+ 2y ∈ T .

Proof. Let a ∈ Sx and b ∈ S2y. Thus, we also have 2y + 1− b ∈ S2y. WLOG x+ a ≡ b (mod 2)
since otherwise, we could have replaced b with 2y + 1− b.

Now, using the first x numbers, we are left with the number a on the board. Now, using
the numbers x+ 1, · · ·x+ y, Alice can ensure that she is left with the number x+ b on the
board. Thus, she can finally perform the move (a, x+ b) 7→ x+a+b

2 .

[x+ y] 7−→ {a, x+ 1, x+ 2, · · ·x+ y} 7−→ {a, x+ b} 7→
{
a+ b+ x

2

}
Lemma 3. 5, 7, 8, 10, 12, and 14 are in T with 3 ∈ S5, 4 ∈ S7, 3 ∈ S8, S10, S14 and 7 ∈ S12.

Proof. We will show a strategy for each as follows: ([n] stands for the set {1, 2, . . . , n})

5:
[5] 7→ {2, 2, 4, 5} 7→ {2, 3, 5} 7→ {2, 4} 7→ {3}

7: (The first move is composed of the first 3 moves for [5])

[7] 7−→ {2, 4, 6, 7} 7→ {2, 5, 7} 7→ {2, 6} 7→ {4}
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8: (The first move is composed of the moves for [7])

[8] 7−→ {4, 8} 7→ {6}

Thus, 6 ∈ S8 =⇒ 3 ∈ S8 by Lemma 1.

10: (The first move is composed of the moves for [8] which lead to 3)

[10] 7−→ {3, 9, 10} 7→ {6, 10} 7→ {8}

Thus, 8 ∈ S10 =⇒ 3 ∈ S10 by Lemma 1.

12: (In the first move we use the idea from Lemma 2 and that 3 ∈ S5, 4 ∈ S7)

[12] 7−→ {3, 5 + 4} 7→ {6}

Now, since 6 ∈ S12, we also have 7 ∈ S12 by Lemma 1.

14: (The first move is composed of the moves for 12 which lead to 7)

[14] 7−→ {7, 13, 14} 7→ {10, 14} 7→ {12}

Now, observe that using Lemma 2 and the fact that we have 8, 10, 12, 14 ∈ T , we get that
2n ∈ T for all n ≥ 4 as for any even number > 8, we can keep subtracting 8 from it till
we hit one of 8, 10, 12 or 14 and Lemma 2 tells us that we can add even numbers within T
freely to one another. Finally using a = 1 and 2b as any even integer atleast 8, we have
2b+ 1 works for all odd integers atleast 9.

Thus, finally we have that Alice has a winning strategy for all positive integers with
the possible exception of 2, 3, 4, 6.

Solution 4. We begin with the following lemma:

Lemma 1. If [n] 7→ (n− 2) then [n+ 3] 7→ (n+ 1).

Proof. We have

[n+ 3] 7→ {n− 2, n+ 1, n+ 2, n+ 3} 7→ {n, n+ 2} 7→ {n+ 1}.

Now, note that [5] 7→ {3} and [10] 7→ {8} as in Solution 3, and

[9] 7→ {1, 4, 7, 8, 9} 7→ {1, 6, 7, 9} 7→ {4, 6, 9} 7→ {5, 9} 7→ {7},

where the first step is to take {2, 3, 4, 5, 6} 7→ {4} via the procedure for [5]. Combining these
three with the Lemma 1, we have that Alice wins for all n ≥ 8 and also for n = 5. Finally,
we see that Alice wins for n = 7 via a direct check as in Solution 3.

Solution 5. We have the following lemma:

Lemma 1. If [n] 7→ {n− 4, n− 2} then [n+ 2] 7→ {n− 2, n}.

Proof. We have

[n+ 2] 7→ {n− 4, n− 2, n+ 1, n+ 2} 7→ {n− 2, n− 1, n+ 1} 7→ {n− 2, n}.

Now, we have

[7] 7→ {1, 2, 3, 4, 6, 6} 7→ {1, 2, 3, 5, 6} 7→ {1, 3, 4, 5} 7→ {2, 4, 5} 7→ {3, 5},

so together with Lemma 1, we get that [n] 7→ {n− 4, n− 2} for all odd n ≥ 7.

Hence, for all odd n ≥ 7, [n] 7→ {n− 4, n− 2} 7→ {n− 3} and [n+ 1] 7→ {n− 3, n+ 1} 7→ {n− 1}.
Thus, we establish that Alice wins for all n ≥ 7. We verify n = 5 via a direct check as
before.

Alice cannot win when n = 2,3,4,6:
We will make some without loss of generality remarks for the cases of n = 4, 6. These
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would follow since if Alice has a winning strategy with moves (a, b) 7→ (c) then she can also
do it in reverse with moves of the form (n+ 1− a, n+ 1− b) 7→ (n+ 1− c). Thus, she could
play the moves symmetrically as well.

Now, we show that indeed she has no strategy for these cases:

• For 2, Alice cannot move and thus loses.

• For 3, she cannot move after (1, 2, 3) 7→ (2, 2).

• For 4, without loss of generality Alice first moves (1, 2, 3, 4) 7→ (1, 3, 3) 7→ (2, 3) and she
cannot move further.

• For 6: Note that in [6], there are exactly 2 numbers in each residue class mod 3. We
make the following observations:

– In every move we need to pick two numbers from different residue classes since
if two unequal numbers are congruent mod 2 and mod 3 then they have to differ
by at least 6.

– The average of these numbers will lie in the third residue class.

This means that at every step the parity of the three residue classes remains the
same, which means that we can never achieve the state of one of the residue classes
having one element left and others having zero elements.

6



Problem 3. Euclid has a tool called splitter which can only do the following two types of
operations:

• Given three non-collinear marked points X,Y, Z, it can draw the line which forms
the interior angle bisector of ∠XY Z.

• It can mark the intersection point of two previously drawn non-parallel lines.

Suppose Euclid is only given three non-collinear marked points A,B,C in the plane. Prove
that Euclid can use the splitter several times to draw the centre of the circle passing
through A,B, and C.

Solution. Let I be the incenter of △ABC. We begin by proving some lemmas about the
power of the tool splitter.

Lemma 1: Euclid can construct the incenter of any three non-collinear given points.

Proof. Observe that the incenter is just given by taking the intersection of any two angle
bisectors.

A

B C

I

Lemma 2: Given four marked points which Euclid knows to be on a circle, Euclid can
draw the circumcentre of the circle through the four points.

Proof. Let the four points be A,B,C,D in this order. Now, observe that Euclid can draw

the midpoint of arc
⌢

BC by intersecting the angle bisectors of ∠BAC and ∠BDC. Let this
point be called X. Thus, Euclid can draw the angle bisector of ∠BXC to get the perpendic-
ular bisector of BC. Repeating the process, Euclid can also get the perpendicular bisector
of CD and intersecting these gives the circumcenter of cyclic quadrilateral ABCD.

A

B C

D

X

O
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Lemma 3. If Euclid can draw the B− excenter of △BIC, then he can also draw the
circumcenter of △ABC.

Proof. Let I1 and I2 be the incenter and B− excenter of △BIC. Now, since (II1CI2) are
concyclic and Euclid can construct all of them, he can draw the circumcentre of △II1C.
Let this be called O1.

Observe that BIO1C are concyclic since O1 is the midpoint of arc
⌢

IC in (BIC). Thus,
Euclid can also draw the circumcentre of △BIC. Let this be called MA. Now, MA is

the midpoint of arc
⌢

BC in (ABC). Thus, again using Lemma 2, we can construct the
circumcentre of (ABC).

Thus, we just need to show that Euclid can draw the external angle bisector of ∠BIC
since he can then intersect it with the angle bisector of ∠IBC to get I2.

This can be done if we have any point on the extension of line BI but observe that the
intersection of BI with the angle bisector of ∠ICA is such a point! Thus, we are done!

All the constructions are now shown in the below figure.

A

B C

I
Z I2

I1

O1

MA

I3

Solution 2. We provide an alternate statement similar to Lemma 3.

Lemma 3†. If Euclid can draw the B and C excenters of △BIC then Euclid can draw the
perpendicular bisector of BC.

Proof. We will call these two points I2 and I3. Observe that ∠I3BI2 = ∠I3CI2 = 90◦. Thus,
I3BI2C is cyclic. Now, Euclid can take the intersection of angle bisectors ∠BI3C and
∠BI2C which will now intersect on the perpendicular bisector of BC. Let this be O2. Now,
Euclid can construct the angle bisector of ∠BO2C as desired!

After this lemma, we can finish as before.
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Problem 4. Let n ⩾ 3 be a positive integer. Find the largest real number tn as a function
of n such that the inequality

max(|a1 + a2|, |a2 + a3|, . . . , |an−1 + an|, |an + a1|) ⩾ tn ·max(|a1|, |a2|, · · · , |an|)

holds for all real numbers a1, a2, · · · , an.

Answer. When n is even, the maximum tn is 0 and when n is odd, the maximum tn is 2
n .

Solution. We consider the case when n is even and when n is odd separately.

• When n is even: let ai = (−1)i, this tells us that

0 ≥ tn

but we also have tn ≥ 0 as

max(|a1 + a2|, |a2 + a3|, . . . , |an−1 + an|, |an + a1|) ⩾ 0

always. Thus, when n is even, tn = 0 .

• When n is odd: let ai = (−1)i(n− 2i). Now, |an| = n and for all i ≤ n− 1:

|ai + ai+1| = |(−1)i(n− 2i− (n− 2i− 2))| = |2i− 2i+ 2| = 2

Also,
|an + a1| = |(−1)n(−n) + (−1)(n− 2)| = |n− n+ 2| = 2

Thus,

tn ≤ 2

n
(5)

Claim. |a1 + a2|+ |a2 + a3|+ . . .+ |an−1 + an|+ |an + a1| ≥ 2max(|a1|, |a2|, · · · , |an|).

Proof. Without loss of generality |a1| = max(|a1|, |a2|, · · · , |an|). Let an+1 = a1, then

|a1 + a2|+ |a2 + a3|+ . . .+ |an−1 + an|+ |an + a1| =
n∑

i=1

∣∣(−1)i (ai + ai+1)
∣∣

and then, by triangle inequality, we have

n∑
i=1

∣∣(−1)i (ai + ai+1)
∣∣ ⩾ ∣∣∣∣∣

n∑
i=1

(−1)i (ai + ai+1)

∣∣∣∣∣
⩾

∣∣∣∣∣−a1 − an+1 +

n∑
i=2

(
(−1)i−1 + (−1)i

)
ai

∣∣∣∣∣
⩾ | − a1 − an+1|
⩾ 2|a1|

Thus,

|a1 + a2|+ |a2 + a3|+ . . .+ |an−1 + an|+ |an + a1| ≥ 2|a1| = 2max(|a1|, |a2|, · · · , |an|)

Since,

n (max(|a1 + a2|, |a2 + a3|, . . . , |an + a1|)) ⩾ |a1 + a2|+ |a2 + a3|+ . . .+ |an + a1|

we must have that

max(|a1 + a2|, |a2 + a3|, . . . , |an−1 + an|, |an + a1|) ⩾
2

n
max(|a1|, |a2|, · · · , |an|) (6)

Combining (5) and (6), we get that for n odd, tn =
2

n
.
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Problem 5. Greedy goblin Griphook has a regular 2000-gon, whose every vertex has a
single coin. In a move, he chooses a vertex, removes one coin each from the two adjacent
vertices, and adds one coin to the chosen vertex, keeping the remaining coin for himself.
He can only make such a move if both adjacent vertices have at least one coin. Griphook
stops only when he cannot make any more moves. What is the maximum and minimum
number of coins that he could have collected?

Answer. The maximum is 1998 and the minimum is 668.

Let the vertices of the 2000-gon be A1, · · ·A2000. We also use indices of vertices modulo 2000
i.e. A0 = A2000, A1 = A2001, and so on.

Solution 1. The solution has 4 parts:

(a) Griphook can collect 1998 coins.

(b) Griphook can collect exactly 668 coins and be unable to make a move.

(c) Griphook cannot collect more than 1998 coins.

(d) Griphook could not have collected less than 668 coins when he cannot make further
moves.

We prove these 4 parts in order. For convenience, we use the following notation:

a1 . . . a2000 7→ a′1a
′
2 . . . a

′
2000

to denote that if Griphook has ai coins on vertex Ai for all i then he can make a sequence
of moves changing the number of coins to a′i on vertex Ai where each ai, a

′
i ≥ 0. We also

use si for any string s to represent the concatenation s i times i.e. si = ss . . . s︸ ︷︷ ︸
s is repeated i times

.

(a) Griphook can collect 1998 coins:

Lemma 1. 1n01s 7→ 010ns for any n ≥ 1 and any string s.

Proof. Observe that 1n01 7→ 1n−1010. Repeat this move n times to get the desired result.

Now, observe that Griphook can collect 1998 coins since:

12000 7→ 119960201 7→ 1199501010
Lemma 1.7→ 010199610

(b) Griphook can collect exactly 668 coins and be unable to make a move:
Observe that Griphook can collect 668 coins in the following way:

12000 7→ 1(020)6661 = 1020(020)6640201 7→ 0110(020)6640110

and he cannot make any further moves.

(c) Griphook cannot collect more than 1998 coins:
Let o be the number of coins on Ao = {A1, A3, . . . , A1999} and e be the number of coins on
Ae = {A2, A4, . . . , A2000}. Now, observe that in any move

o− e (mod 3)

is unchanged. But, it is initally 0 and thus, since atleast one coin is remaining at the end,
we must have |o|, |e| ≥ 1 and thus atleast 2 coins remain at the end.
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(d) Griphook could not have collected less than 668 coins when he cannot make
further moves:

We need to show that at least 668 moves are possible. Split the vertices into two
disjoint regular 1000-gons consisting of the vertices at the even positions and odd po-
sitions respectively. Call these polygons Polygon A = {v1, v3, . . . , v1999} and Polygon B =
{v0, v2, . . . , v1998}. We will consider the indices modulo 2000, i.e., v2000 = v0, v−1 = v1999, and
so on. In any move, Griphook is choosing a vertex vi+1, such that are both vi and vi+2 are
non-empty and removing a coin from each (and adding a coin to vi+1). Suppose Griphook
made ≤ 333 moves on vertices of Polygon B. Then there must be three consecutive ver-
tices {vj−2, vj , vj+2} in Polygon B that Griphook never makes moves on. This means that
the coins that were at vj−1 and vj+1 initially are never removed. Hence, Griphook needs
at least 334 moves on Polygon B and similarly at least 334 moves on Polygon A to ensure
that he cannot make any further moves, for a total of at least 668 moves.

Solution 2. We provide an alternate proof of (d). Let c(Ai) be the number of coins at
vertex Ai.

Lemma 1. c(Ai) + c(Ai+1) ⩽ 2 for all i at every stage during the process.

Proof. Observe that no move can increase the quantity c(Ai) + c(Ai+1) and initially, we
have c(Ai) + c(Ai+1) = 2.

Now, let the final position have ai coins on vertex Ai. Now, we would like to prove that∑
ai ≤ 1332 since 2000−

∑
ai is the number of coins that Griphook picked up.

Lemma 2. Let a1, a2, . . . an be any non-negative integers such that:

• ai + ai+1 ≤ 2 for all i,

• and whenever ai is positive then ai−2 = ai+2 = 0.

where indices are modulo n. Then,

n∑
i=1

ai ≤ 2
⌊n
3

⌋
Proof. We will induct on this claim. Observe that when n = 1 or n = 2, the claim is im-
mediate as ai = ai+2 so none of the values can be > 0. If n = 3, then no two consecutive
values can be > 0 and thus

∑
ai ≤ 2 as required. Now if n > 3, we proceed by induction.

If there exists an i such that ai and ai+1 are positive then

ai = ai+1 = 1, ai+2 = ai+3 = ai−1 + ai−2 = 0.

Thus, we can delete ai, ai+1 and ai−1 to be left with n − 3 numbers which also satisfy the
properties given and we are done by the inductive hypothesis.

If there is no such i and if ai is positive, then ai−1 = ai+1 = ai+2 = ai−2 = 0. Hence,
we can delete ai−1, ai, ai+1 and the requisite properties are still satisfied by the remaining
numbers. Thus, we are done!

Plugging in n = 2000 gives us the desired result.

Solution 3. We provide an alternate proof of (c). This proof generalizes to show that for
every n > 5, if we start with a regular n-gon with a coin on every vertex, Griphook
can take at most n− 2 coins. (The appropriate change of 2000 to n in each step is left to
the reader)

If in a move, the number of coins on a vertex is increased, then the number of coins
on both the adjacent vertices are reduced. Therefore, the sum of number of coins on any
two adjacent vertices never increases throughout the process. In particular, this sum is
always ≤ 2. Similarly, we can show that the sum of the number of coins in three adjacent
vertices is ≤ 3.

Let us assume that 1999 moves are possible. Then the final state of the board is: a
single coin on a vertex, and every other vertex being empty. We consider the moves in
reverse, i.e., a move consisting of removing a coin from a vertex and placing two coins in
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the adjacent vertices. Then, by making this“reverse move” 1999 times, we should be able
to go from this final state to the state where every vertex has a single coin.

After the first reverse move, the board is in the state

×

×

×

×

×
× means empty vertex, ◦ means vertex with one coin, • means vertex with two coins.
Now, the next reverse move puts the board in the state (due to symmetry)

×

×
×

×

For the next reverse move, we have 3 choices, which creates the possible states

×

××

× ×

×
×

×
××

×
I II III

Case I

Now, if the next reverse move is performed on one of the vertices with the single coins,
then we create the situation where a vertex with two coins is next to a vertex with one
coin. This is a contradiction to our initial observation that the sum of number of coins
on any two adjacent vertices is always ≤ 2. Therefore, the next reverse move must be
performed on the vertex with two coins on it. This creates the state

××

Now, any reverse move necessarily creates a vertex with two coins next to a vertex with
one coin. Therefore, we are unable to perform any further reverse moves in case I.

Case II

There are three possible choices for the next reverse move, creating the possible states

×× ×

×
×

×
×

×
×

×

The first state has already been ruled out in case I. The second one violates the rule
of number of coins in two adjacent vertices being ≤ 2. The third state violates the rule of
number of coins in two adjacent vertices being ≤ 3.

Therefore we see that the cases I and II are not possible. So, we third reverse move
must land us in case III.

Now, let us consider the fourth reverse move. The only reverse move that does not
create a 2− 1, or a 2− 0− 2, thereby violating our initial rules, is the move on the isolated
vertex with a coin, creating the state
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×

×

×

×

V6

V5

V4
V3V2

V1

From here on, we claim that, for all 4 ≤ n ≤ 1998, after the n-th reverse move, the state
of the polygon must be the following: a coin each on vertices V1, V2, . . . , Vn, and Vn+2, and
rest of the vertices being empty.

This claim can be proven by induction on n. The base case for n = 4 has already been
shown. Let us assume the result to hold for n. If the next reverse move is made on Vi

where i = 1 or 2, then Vi+1 has 2 coins and Vi+2 holds one coin, which is a contradiction.
If the reverse move is made on Vi where 3 ≤ i ≤ n, then Vi−1 has 2 coins and Vi−2 holds
one coin, which is a contradiction as well. So, the only possible reverse move is on Vn+2.
This leads to the state where vertices V1, V2, . . . , Vn+1 and Vn+3 hold a coin each, and rest
of the vertices are empty. This completes the induction step.

So, after 1998 reverse moves, every vertex except V1999 hold a coin each. Now, we can
clearly see that no reverse move exists that can take this state to the state with a coin on
all 2000 vertices.
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Problem 6. Let b ⩾ 2 be a positive integer. Anu has an infinite collection of notes with
exactly b− 1 copies of a note worth bk − 1 rupees, for every integer k ⩾ 1. A positive integer
n is called payable if Anu can pay exactly n2 + 1 rupees by using some collection of her
notes. Prove that if there is a payable number, there are infinitely many payable numbers.

Let sb(m) denote the sum of digits of m in base b. Note that n is payable if and only if
n2 + 1 = m − sb(m) for some m > 0. We need to show that if there is a payable positive
integer n then there are infinitely many payable positive integers n. We begin by proving
that the following is an equivalent statement:

Let b ≥ 2 be a positive integer. Suppose there exists a positive integer n0

such that n0 − sb(n0)− 1 is a perfect square. Prove that there are infinitely
many positive integers n such that n− sb(n)− 1 is a perfect square.

To show this, it suffices to show that given any t ∈ N, x − sb(x) = t has only finitely
many solutions x ∈ N. Let z be the number whose base b representation is obtained by

deleting the last digit of the base b representation of x, i.e., z =
x− r(x)

b
, where r(x) is the

remainder when x is divided by b. Then x − sb(x) = bz − sb(z). Now, note that bz − sb(z)
is a strictly increasing sequence, since b(z + 1) − sb(z + 1) ≥ bz + b − sb(z) − 1 > bz − sb(z).
Therefore, we can see that for a fixed t, there are exactly 0 or b many solutions to the
equation x− sb(x) = t.

We will now work with the restatement. For simplicity, we will separately deal with the
cases when b = 2 and b > 2.

Case 1: b = 2 :

For any integer k ≥ 2, take n = 22k + 2k+1 + 4 + 2. Clearly s2(n) = 4, so

n− s2(n)− 1 = 22k + 2k+1 + 1 = (2k + 1)2

is a perfect square.

Also, for any integer k ≥ 3, we can take n = 22k + 2k+2 + 8. Clearly, s2(n) = 3, so

n− s2(n)− 1 = 22k + 2k+2 + 4 = (2k + 2)2

Case 2: b > 2 : Suppose for some integers n0 > 0 and x ⩾ 0, we have n0 − sb(n0)− 1 = x2.

Solution 1. Observe that
b− 1 | n0 − sb(n0) = x2 + 1.

This means −1 is a quadratic residue modulo b − 1, and that is all we’ll use. Let r be a
residue modulo b− 1 satisfying r2 + 1 ≡ 0 (mod b− 1); so 0 ≤ r ≤ b− 2.
We must have r > 0. Then, by replacing r by b − 1 − r if needed, we can assume r ≤ b−1

2 .
Let

a =
r2 + 1

b− 1
<

(b− 1)2 + 1

b− 1
= b− 1 +

1

b− 1
< b.

For any positive integer k ≥ 2, consider n = b2k + 2(r − 1)bk + ab. Since 0 ≤ a < b and
0 ≤ 2(r − 1) < b, we have sb(n) = 1 + 2(r − 1) + a. Hence

n− sb(n)− 1 = b2k +2(r− 1)bk + ab− a− 2r+1− 1 = b2k +2(r− 1)bk + r2 − 2r+1 = (bk + r− 1)2

is a perfect square.

Solution 2. Let α be any integer such that sb(α
2) = n0 − sb(n0) − 1 = x2. Now, consider

n = α2 · b2N + n0 for any N such that b2N > n0. Thus,

n− sb(n)− 1 = α2 · b2N − sb(α
2) + x2 = (αbN )2
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Now, we just need to show the existence of such an α. Firstly, observe that since

b− 1|x2 + 1,

we can assume x > 0.

Now, let

α =

x−1∑
i=0

b2
i

Now, observe that

α2 =

x∑
i=1

b2
i

+
∑

0≤i<j≤x−1

2b2
i+2j

Observe that any term of the form k = 2i + 2j with i < j uniquely determines i, j and
cannot be a power of 2. Thus, sb(α2) = x2 as desired.

Remark. Solution 2 works for base 2 too since sb((2
k − 1)2) = k for any positive integer k

which shows that the required α exists. (Note that x > 0 is given in the original problem
statement so we do not need it)

15


