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Official Solutions

Problem 1. Let n > 1 be a positive integer. Call a rearrangement a1, a2, . . . , an of 1, 2, . . . , n
nice if for every k = 2, 3, . . . , n, we have that a1 + a2 + · · ·+ ak is not divisible by k.

(a) If n > 1 is odd, prove that there is no nice rearrangement of 1, 2, . . . , n.

(b) If n is even, find a nice rearrangement of 1, 2, . . . , n.

Solution. For the first part, note that the given condition for k = n implies that the sum
a1+a2+ . . .+an is not divisible by n. However, a1, a2, . . . , an is a rearrangement of 1, 2, . . . , n

so their sum is equal to 1 + 2 + . . . + n =
n(n+ 1)

2
which is divisible by n for odd n. Thus,

there cannot be any nice rearrangement of 1, 2, . . . , n for odd n.
For the second part, let n = 2m. We show that the sequence

2, 1, 4, 3, 6, 5, 8, 7, ....., 2m, 2m− 1

is a nice rearrangement of 1, 2, . . . , 2m. For k even, we have a1+a2+. . .+ak =
k(k + 1)

2
which

is not divisible by k since (k+1)/2 is not an integer. For k odd, we have a1 + a2 + . . .+ ak =
k(k + 1)

2
+ 1 which is 1 more than a multiple of k, so it is again not divisible by k for

k > 1.

Problem 2. For a positive integer n, let R(n) be the sum of the remainders when n is
divided by 1, 2, . . . , n. For example, R(4) = 0+0+1+0 = 1, R(7) = 0+1+1+3+2+1+0 = 8.
Find all positive integers n such that R(n) = n− 1.

Solution. Let n > 8. The remainder when n is divided by some i satisfying n
2 < i ≤ n is

(n− i). Adding, we get that

n− 1 = R(n) ≥
n∑

i=⌊n
2 ⌋+1

(n− i) =

⌈n
2 ⌉−1∑
k=1

k =
1

2

⌈n
2

⌉(⌈n
2

⌉
− 1
)
≥ 1

2

⌈n
2

⌉
· 4 ≥ n

This is a contradiction. So, we get that n ≤ 8. Now we can compute that R(1) = R(2) =
0, R(3) = R(4) = 1, R(5) = 4, R(6) = 3, R(7) = R(8) = 8. Therefore, the only solutions are
n = 1 and n = 5.

Problem 3. Let ABC be an acute triangle with AB = AC. Let D be the point on BC
such that AD is perpendicular to BC. Let O,H,G be the circumcentre, orthocentre and
centroid of triangle ABC respectively. Suppose that 2 ·OD = 23 ·HD. Prove that G lies on
the incircle of triangle ABC.

Solution. Let I be the incenter of △ABC. First note that O,G,H, I all lie on AD since it
is simultaneously the perpendicular bisector of BC, the A−altitude, the A− median and
the angle bisector of ∠BAC.

Suppose the reflection of H across BC is M . Then M lies on the circumcircle of △ABC
as well as lies on the angle bisector of ∠BAC, so it is the midpoint of arc BC not containing
A. Then, we note that ∠MBI = ∠MIB, so MB = MI. Combining with MB = MC, we
have that M is the circumcenter of △BIC.

Now, let the circumradius of △ABC be R, let OD = x, HD = y. Then we have x =
23

2
y.

Also, R = OM = OD + DM = OD + HD = x + y. Thus, y =
2

25
R. This implies that
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AD = 2R − y =
48

25
R. Now, recall that G divides AD in the ratio 2 : 1, so GD =

16

25
R.

Also, we have △MDB ∼ △MBA since the angle
at M is common and ∠MBD = ∠MAB, both
equalling ∠BAC/2. Therefore, MB2 = MD ·MA,
and hence

MI2 = MD ·MA = y · 2R =
4

25
R2 =⇒ MI =

2

5
R.

Thus, ID =
8

25
R, which combined with GD =

16

25
R implies that GI = ID is equal to the inra-

dius, proving that G lies on the incircle.

O
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Remark. A student well-versed in trigonometry may readily obtain cosA = 23/25 by
observing that OD = R cosA and HD = 2R cosB cosC = 2R cos2(90◦ − A/2) = R(1 − cosA).
Now GD = AD/3 = (OA+OD)/3 = 16R/25 and r = AD/(1+csc(A/2)) = 48R/(25×6) = 8R/25
whence GI = ID = r and the conclusion follows.

Problem 4. Let a1, a2, a3, a4 be real numbers such that a21 + a22 + a23 + a24 = 1. Show that

there exist i, j with 1 ≤ i < j ≤ 4, such that (ai − aj)
2 ≤ 1

5
.

Solution 1. Let m be the minimum of |ai − aj | over all 1 ≤ i < j ≤ 4. Without loss
of generality, we may assume that a1 ≤ a2 ≤ a3 ≤ a4. Then aj − ai ≥ (j − i)m for all
1 ≤ i < j ≤ 4. Thus, ∑

1≤i<j≤4

(ai − aj)
2 ≥

∑
1≤i<j≤4

(j − i)2m2 = 20m2.

On the other hand,∑
1≤i<j≤4

(ai − aj)
2 = 4(a21 + a22 + a23 + a24)− (a1 + a2 + a3 + a4)

2 ≤ 4.

Thus, 20m2 ≤ 4 =⇒ m2 ≤ 1/5.

Solution 2. Suppose |ai − aj | >
1√
5

for all 1 ≤ i < j ≤ 4. Then if x, y are respectively the

maximum and minimum among the ai, then x − y >
3√
5
. Suppose u, v are the other two

ai apart from x, y. Then using a2 + b2 ≥ 1

2
(a− b)2, we have that

1 = x2 + y2 + u2 + v2 ≥ 1

2
(x− y)2 +

1

2
(u− v)2 >

1

2

(
9

5
+

1

5

)
= 1

which is a contradiction.

Remark. There is another solution involving casework where the cases involving the
number of positive and negative ai are distinguished. We exclude it for brevity.

Problem 5. Let ABCD be a cyclic quadrilateral such that AB is parallel to CD. Let O be
the circumcentre of ABCD, and L be the point on AD such that OL is perpendicular to
AD. Prove that

OB · (AB + CD) = OL · (AC +BD).

Solution 1. Let K be the foot of perpendicular from O onto BC. Note that ABCD is a
isosceles trapezium, therefore AC + BD = 2AC. We have that L and K are the midpoints
of AD and BC respectively, therefore LK = (AB + CD)/2. Also OB = OA. Thus it suffices

to prove that
OA

AC
=

OL

LK
.
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Now ∠AOL = ∠ACD = ∠BDC = ∠COK. Thus, ∠AOC = ∠LOK. Also note that
OL = OK since distance from center to two equal chords is the same. Thus, △AOC
and △LOK are isosceles triangles with ∠AOC = ∠LOK, hence they are similar, which
immediately implies the desired.

Solution 2. As before, note that ABCD is an isosceles trapezium. Let the intersection
of AC and BD be E, the foot of perpendicular from A onto CD be P , and let AP = h.
Let ∠BDC = ∠ACD = x Then ∠BEC = 2x. Let the radius OB = R. Thus, [ABCD] =
1

2
AC2 sin 2x =

1

2
(AB + CD) · h. Now, note that OL = R cosx by considering △AOL, and

h = AC sinx. Therefore, (AB + CD) · h = AC2 sin 2x = h · 2 ·AC cosx. Hence

OL

OB
= cosx =

AB + CD

2AC

which finishes the problem since AC = BD.

Problem 6. Let n ≥ 2 be a positive integer. Call a sequence a1, a2, · · · , ak of integers an
n-chain if 1 = a1 < a2 < · · · < ak = n, and ai divides ai+1 for all i, 1 ≤ i ≤ k − 1. Let f(n) be
the number of n-chains where n ≥ 2. For example, f(4) = 2 corresponding to the 4-chains
{1, 4} and {1, 2, 4}.

Prove that f(2m · 3) = 2m−1(m+ 2) for every positive integer m.

Solution. We will prove that for any two distinct primes p, q, that f(pm · q) = 2m−1(m+ 2)
for all integers m ≥ 1. Suppose n = pm · q, and let {a1, a2, · · · , ak} be a n-chain. Then
ai divides ai+1 implies that ai+1/ai = pbi · qci , where bi, ci are non-negative integers for
i = 1, · · · , k − 1. Note that ai+1 > ai implies that bi and ci cannot be simultaneously 0.

Now, we have b1 + . . .+ bk−1 = m and c1 + . . .+ ck−1 = 1. Thus, exactly one of the ci will
be equal to 1, and that implies that at most one of the bi can be 0.

Recall that a composition of m is a sequence of positive integers adding to m. Cor-
responding to any l-length composition x1, . . . , xl of m, we will get exactly 2l + 1 many
n-chains. l of them are obtained by setting bi = xi for all i and choosing one of c1, . . . cl to
be 1, and rest to be 0. The other l+1 chains of length l+1 are obtained by choosing some
1 ≤ j ≤ l + 1, then setting cj = 1, bj = 0, bi = xi for all i < j, and bi = xi−1 for all i > j.

This can be done in various ways as follows:
First way: it is well known that there are

(
m−1
l−1

)
compositions of m with l parts. There-
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fore, we need

m∑
l=1

(
m− 1

l − 1

)
(2l + 1) =

m−1∑
l=0

(
m− 1

l

)
(2l + 3)

= 2

m−1∑
l=0

l ·
(
m− 1

l

)
+ 3

m−1∑
l=0

(
m− 1

l

)

= 2

(
m−1∑
l=1

(m− 1) ·
(
m− 2

l − 1

))
+ 3 · 2m−1

= 2(m− 1)2m−2 + 3 · 2m−1 = 2m−1(m+ 2).

Second way: We will show that the total number of compositions of m is 2m−1 and the
sum of the number of parts over all compositions of m is 2m−2(m+1) via direct bijections.
This finishes the problem, since we get the sum of (2l + 1) over all compositions to be
2 · 2m−2(m+ 1) + 2m−1 = 2m−1(m+ 2).

For the first one, consider sequences of 0’s and 1’s such that there are exactly m 1’s,
no two 0’s are adjacent and the sequence begins and ends with a 1. Then we can choose
whether or not to insert a 0 in the m − 1 spaces between the 1’s, hence there are 2m−1

possible ways to do it.
For the second one, we consider the above sequences but we put a single 0 at the end,

and we also select a special 0. Then we can choose the special 0 first. If this is the last
0 then we get 2m−1 choices for the other zeroes, and if not then we have m − 1 choices
for the special 0, and then 2m−2 choices for the other spaces. This totals to 2m−2(m + 1)
ways.

Remark: There are other solutions involving induction using recursions of the form

f(2m · 3) =
∑

0≤l<m

f(2l · 3) +
∑

0≤l≤m

f(2l)

or f(2m · 3) = 2(f(2m−1 · 3) + f(2m)− f(2m−1)). Again, we omit them for the sake of brevity.
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