RMO 2024

Official Solutions

Problem 1. Let $n > 1$ be a positive integer. Call a rearrangement a_1, a_2, \ldots, a_n of $1, 2, \ldots, n$ *nice* if for every $k = 2, 3, ..., n$, we have that $a_1 + a_2 + \cdots + a_k$ is **not** divisible by k.

(a) If $n > 1$ is odd, prove that there is no *nice* rearrangement of $1, 2, \ldots, n$.

(b) If *n* is even, find a *nice* rearrangement of $1, 2, \ldots, n$.

Solution. For the first part, note that the given condition for $k = n$ implies that the sum $a_1 + a_2 + \ldots + a_n$ is not divisible by n. However, a_1, a_2, \ldots, a_n is a rearrangement of $1, 2, \ldots, n$ so their sum is equal to $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ which is divisible by *n* for odd *n*. Thus, there cannot be any nice rearrangement of $1, 2, \ldots, n$ for odd n.

For the second part, let $n = 2m$. We show that the sequence

$$
2, 1, 4, 3, 6, 5, 8, 7, \ldots, 2m, 2m - 1
$$

is a nice rearrangement of $1, 2, \ldots, 2m$. For k even, we have $a_1 + a_2 + \ldots + a_k = \frac{k(k+1)}{2}$ $\frac{1}{2}$ which is not divisible by k since $(k+1)/2$ is not an integer. For k odd, we have $a_1 + a_2 + \ldots + a_k =$ $k(k+1)$ $\frac{1}{2}$ + 1 which is 1 more than a multiple of k, so it is again not divisible by k for $k > 1$.

Problem 2. For a positive integer n, let $R(n)$ be the sum of the remainders when n is divided by $1, 2, \ldots, n$. For example, $R(4) = 0 + 0 + 1 + 0 = 1$, $R(7) = 0 + 1 + 1 + 3 + 2 + 1 + 0 = 8$. Find all positive integers *n* such that $R(n) = n - 1$.

Solution. Let $n > 8$. The remainder when n is divided by some i satisfying $\frac{n}{2} < i \le n$ is $(n - i)$. Adding, we get that

$$
n-1 = R(n) \ge \sum_{i=\lfloor \frac{n}{2} \rfloor + 1}^{n} (n-i) = \sum_{k=1}^{\lceil \frac{n}{2} \rceil - 1} k = \frac{1}{2} \left\lceil \frac{n}{2} \right\rceil \left(\left\lceil \frac{n}{2} \right\rceil - 1 \right) \ge \frac{1}{2} \left\lceil \frac{n}{2} \right\rceil \cdot 4 \ge n
$$

This is a contradiction. So, we get that $n \leq 8$. Now we can compute that $R(1) = R(2) =$ $0, R(3) = R(4) = 1, R(5) = 4, R(6) = 3, R(7) = R(8) = 8.$ Therefore, the only solutions are $n = 1$ and $n = 5$. \Box

Problem 3. Let ABC be an acute triangle with $AB = AC$. Let D be the point on BC such that AD is perpendicular to BC. Let O, H, G be the circumcentre, orthocentre and centroid of triangle ABC respectively. Suppose that $2 \cdot OD = 23 \cdot HD$. Prove that G lies on the incircle of triangle ABC.

Solution. Let I be the incenter of $\triangle ABC$. First note that O, G, H, I all lie on AD since it is simultaneously the perpendicular bisector of BC, the A−altitude, the A− median and the angle bisector of ∠BAC.

Suppose the reflection of H across BC is M. Then M lies on the circumcircle of $\triangle ABC$ as well as lies on the angle bisector of $\angle BAC$, so it is the midpoint of arc BC not containing A. Then, we note that $\angle MBI = \angle MIB$, so $MB = MI$. Combining with $MB = MC$, we have that M is the circumcenter of $\triangle BIC$.

Now, let the circumradius of $\triangle ABC$ be R, let $OD = x$, $HD = y$. Then we have $x = \frac{23}{9}$ $\frac{1}{2}y$. Also, $R = OM = OD + DM = OD + HD = x + y$. Thus, $y = \frac{2}{N}$ $\frac{2}{25}R$. This implies that $AD = 2R - y = \frac{48}{25}$ $\frac{48}{25}R$. Now, recall that G divides AD in the ratio 2 : 1, so $GD = \frac{16}{25}$ $rac{18}{25}R$.

Also, we have $\triangle MDB \sim \triangle MBA$ since the angle at M is common and $\angle MBD = \angle MAB$, both equalling $\angle BAC/2$. Therefore, $MB^2 = MD \cdot MA$, and hence

$$
MI^2 = MD \cdot MA = y \cdot 2R = \frac{4}{25}R^2 \implies MI = \frac{2}{5}R.
$$

Thus, $ID = \frac{8}{8}$ $\frac{1}{25}R$, which combined with $GD =$ 16 $\frac{25}{25}R$ implies that $GI = ID$ is equal to the inradius, proving that G lies on the incircle.

 \Box

 \Box

Remark. A student well-versed in trigonometry may readily obtain $\cos A = 23/25$ by observing that $OD = R \cos A$ and $HD = 2R \cos B \cos C = 2R \cos^2(90^\circ - A/2) = R(1 - \cos A)$. Now $GD = AD/3 = (OA + OD)/3 = 16R/25$ and $r = AD/(1 + \csc(A/2)) = 48R/(25 \times 6) = 8R/25$ whence $GI = ID = r$ and the conclusion follows.

Problem 4. Let a_1, a_2, a_3, a_4 be real numbers such that $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$. Show that there exist *i*, *j* with $1 \le i < j \le 4$, such that $(a_i - a_j)^2 \le \frac{1}{5}$ $\frac{1}{5}$.

Solution 1. Let m be the minimum of $|a_i - a_j|$ over all $1 \leq i \leq j \leq 4$. Without loss of generality, we may assume that $a_1 \le a_2 \le a_3 \le a_4$. Then $a_j - a_i \ge (j - i)m$ for all $1 \leq i \leq j \leq 4$. Thus,

$$
\sum_{1 \le i < j \le 4} (a_i - a_j)^2 \ge \sum_{1 \le i < j \le 4} (j - i)^2 m^2 = 20m^2.
$$

On the other hand,

$$
\sum_{1 \le i < j \le 4} (a_i - a_j)^2 = 4(a_1^2 + a_2^2 + a_3^2 + a_4^2) - (a_1 + a_2 + a_3 + a_4)^2 \le 4.
$$

Thus, $20m^2 \leq 4 \implies m^2 \leq 1/5$.

Solution 2. Suppose $|a_i - a_j| > \frac{1}{\sqrt{2}}$ $\frac{1}{5}$ for all $1 \leq i < j \leq 4$. Then if x, y are respectively the maximum and minimum among the a_i , then $x - y > \frac{3}{4}$ $\frac{1}{5}$. Suppose u, v are the other two a_i apart from x, y . Then using $a^2 + b^2 \geq \frac{1}{2}$ $\frac{1}{2}(a-b)^2$, we have that

$$
1 = x^{2} + y^{2} + u^{2} + v^{2} \ge \frac{1}{2}(x - y)^{2} + \frac{1}{2}(u - v)^{2} > \frac{1}{2} \left(\frac{9}{5} + \frac{1}{5}\right) = 1
$$

which is a contradiction.

Remark. There is another solution involving casework where the cases involving the number of positive and negative a_i are distinguished. We exclude it for brevity.

Problem 5. Let ABCD be a cyclic quadrilateral such that AB is parallel to CD. Let O be the circumcentre of $ABCD$, and L be the point on AD such that OL is perpendicular to AD. Prove that

$$
OB \cdot (AB + CD) = OL \cdot (AC + BD).
$$

Solution 1. Let K be the foot of perpendicular from O onto BC. Note that ABCD is a isosceles trapezium, therefore $AC + BD = 2AC$. We have that L and K are the midpoints of AD and BC respectively, therefore $LK = (AB + CD)/2$. Also $OB = OA$. Thus it suffices to prove that $\frac{OA}{AC} = \frac{OL}{LK}$ LK .

Now ∠AOL = ∠ACD = ∠BDC = ∠COK. Thus, ∠AOC = ∠LOK. Also note that $OL = OK$ since distance from center to two equal chords is the same. Thus, $\triangle AOC$ and $\triangle LOK$ are isosceles triangles with $\angle AOC = \angle LOK$, hence they are similar, which immediately implies the desired.

Solution 2. As before, note that ABCD is an isosceles trapezium. Let the intersection of AC and BD be E, the foot of perpendicular from A onto CD be P, and let $AP = h$. Let ∠BDC = ∠ACD = x Then ∠BEC = 2x. Let the radius $OB = R$. Thus, [ABCD] = 1 $\frac{1}{2}AC^2 \sin 2x = \frac{1}{2}$ $\frac{1}{2}(AB + CD) \cdot h$. Now, note that $OL = R \cos x$ by considering $\triangle AOL$, and $h = AC \sin x$. Therefore, $(AB + CD) \cdot h = AC^2 \sin 2x = h \cdot 2 \cdot AC \cos x$. Hence

$$
\frac{OL}{OB} = \cos x = \frac{AB + CD}{2AC}
$$

which finishes the problem since $AC = BD$.

Problem 6. Let $n \geq 2$ be a positive integer. Call a sequence a_1, a_2, \dots, a_k of integers an *n-chain* if $1 = a_1 < a_2 < \cdots < a_k = n$, and a_i divides a_{i+1} for all $i, 1 \le i \le k-1$. Let $f(n)$ be the number of *n*-chains where $n \geq 2$. For example, $f(4) = 2$ corresponding to the 4-chains ${1, 4}$ and ${1, 2, 4}$.

Prove that $f(2^m \cdot 3) = 2^{m-1}(m+2)$ for every positive integer m.

Solution. We will prove that for any two distinct primes p, q , that $f(p^m \cdot q) = 2^{m-1}(m+2)$ for all integers $m \geq 1$. Suppose $n = p^m \cdot q$, and let $\{a_1, a_2, \dots, a_k\}$ be a n-chain. Then a_i divides a_{i+1} implies that $a_{i+1}/a_i = p^{b_i} \cdot q^{c_i}$, where b_i, c_i are non-negative integers for $i = 1, \dots, k - 1$. Note that $a_{i+1} > a_i$ implies that b_i and c_i cannot be simultaneously 0.

Now, we have $b_1 + \ldots + b_{k-1} = m$ and $c_1 + \ldots + c_{k-1} = 1$. Thus, exactly one of the c_i will be equal to 1, and that implies that at most one of the b_i can be 0.

Recall that a *composition* of m is a sequence of positive integers adding to m. Corresponding to any *l*-length composition x_1, \ldots, x_l of m, we will get exactly $2l + 1$ many *n*-chains. *l* of them are obtained by setting $b_i = x_i$ for all *i* and choosing one of $c_1, \ldots c_l$ to be 1, and rest to be 0. The other $l + 1$ chains of length $l + 1$ are obtained by choosing some $1 \leq j \leq l+1$, then setting $c_j = 1$, $b_j = 0$, $b_i = x_i$ for all $i < j$, and $b_i = x_{i-1}$ for all $i > j$.

This can be done in various ways as follows:

First way: it is well known that there are $\binom{m-1}{l-1}$ compositions of m with l parts. There-

$$
\sum_{l=1}^{m} {m-1 \choose l-1} (2l+1) = \sum_{l=0}^{m-1} {m-1 \choose l} (2l+3)
$$

= $2 \sum_{l=0}^{m-1} l \cdot {m-1 \choose l} + 3 \sum_{l=0}^{m-1} {m-1 \choose l}$
= $2 \left(\sum_{l=1}^{m-1} (m-1) \cdot {m-2 \choose l-1} \right) + 3 \cdot 2^{m-1}$
= $2(m-1)2^{m-2} + 3 \cdot 2^{m-1} = 2^{m-1}(m+2).$

Second way: We will show that the total number of compositions of m is 2^{m-1} and the sum of the number of parts over all compositions of m is $2^{m-2}(m+1)$ via direct bijections. This finishes the problem, since we get the sum of $(2l + 1)$ over all compositions to be $2 \cdot 2^{m-2}(m+1) + 2^{m-1} = 2^{m-1}(m+2).$

For the first one, consider sequences of 0's and 1's such that there are exactly m 1's, no two 0's are adjacent and the sequence begins and ends with a 1. Then we can choose whether or not to insert a 0 in the $m-1$ spaces between the 1's, hence there are 2^{m-1} possible ways to do it.

For the second one, we consider the above sequences but we put a single 0 at the end, and we also select a *special* 0. Then we can choose the special 0 first. If this is the last 0 then we get 2^{m-1} choices for the other zeroes, and if not then we have $m-1$ choices for the special 0, and then 2^{m-2} choices for the other spaces. This totals to $2^{m-2}(m+1)$ ways. \Box

Remark: There are other solutions involving induction using recursions of the form

$$
f(2^m \cdot 3) = \sum_{0 \le l < m} f(2^l \cdot 3) + \sum_{0 \le l \le m} f(2^l)
$$

or $f(2^m \cdot 3) = 2(f(2^{m-1} \cdot 3) + f(2^m) - f(2^{m-1}))$. Again, we omit them for the sake of brevity.