Any alternative method of solution to any question that is scientifically and mathematically correct, and leads to the same answer will be accepted with full credit. Partially correct answers will gain partial credit.

For questions requiring calculations, full credit is given only if necessary steps of the calculations are written. In problems having related sub-parts, consistency of answers of the related sub-parts is also checked in evaluation.

Problem 1

The Fifth Taste

1.2

D

1.3 \begin{tabular}{|l|l|}

\hline | 2 2-methyl-3-oxopropanenitrile | |
| :---: | :---: |
| or | 2-formylpropanenitrile | \& 1 mark

\hline
\end{tabular}

1.5

1.6 Nucleotides

X
1 mark
(Glycosides also accepted in addition)

1 mark
1 mark
1.8

2 marks
1.5 marks
1.5 marks

A hand-made Freezer

2.1

$T_{2}=571 \mathrm{~K}$
$P_{2}=9.52 \mathrm{~atm}$

3 marks
$2.2 \quad P_{3}=5.01 \mathrm{~atm}$ or 5.00 atm
2 marks
2.3 iii) \square
X
$2.4 \quad T_{4}=157.9 \mathrm{~K}, P_{4}=0.53 \mathrm{~atm}$ 2 marks
2.5

> Surface area of chamber \mathbf{B} in contact with chamber $\mathbf{A}=775 \mathrm{~cm}^{2}$ Remaining surface area of chamber $\mathbf{B}=3750 \mathrm{~cm}^{2}$
2.6

2.7 i)

2 marks
2.8 Parameters which will remain same:

$$
P_{3}, P_{4}, T_{3}, T_{4}
$$

4 marks
ii)

iii) $\quad \mathrm{X}$

Parameters which will decrease:

$$
T_{2}, T_{5}, P_{2}, P_{5}
$$

Parameters which will increase
none
2.9 i) \quad T marks
ii)

T
iii) T
iv) $\quad \mathrm{F}$

Problem 3
23 marks

Acetic acid

Part-I

3.1 i) X
iii) X
1 mark
3.2 i)

1 mark
iv)

Part-II

3.3

1 mark
3.4

C1
C2
C3

$$
\mathbf{V}=\mathrm{CH}_{3} \mathrm{COI}, \quad \mathbf{Y}=\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathbf{Z}=\mathrm{HI}
$$

3.5

Part-III

3.6

Q

R

S

6 marks

2 marks

Also accepted theoretically,
i) Aldehydes
iii) Carboxylic acids

$n+1$
$n+1$

1
1

3.8 i) propionic acid (by-product)
ii) \mathbf{S} (by-product)
$\mathrm{CH}_{3}{ }^{13} \mathrm{CH}_{2}{ }^{13} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{CH}_{3}{ }^{13} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{13} \mathrm{CH}_{2}{ }^{13} \mathrm{CO}_{2} \mathrm{H}$
3.9
$\Delta \mathrm{H}_{\mathrm{f}}($ acetic acid $)=-36.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The question was misprinted. The intended question was to calculate $\Delta \mathrm{H}^{\circ}$ reaction of acetic acid. Hence, both the calculated answer and the ΔH° formation of acetic acid value given have been accepted.
3.10
i) X
ii)

3 marks

1 mark

1 mark

Inter-atomic Forces and Static Friction

$4.1 \quad F(r)=-2 D \alpha\left(1-e^{-\alpha\left(r-r_{e}\right)}\right) e^{-\alpha\left(r-r_{e}\right)}$
4.2 $\mathrm{V}(\underline{r})$ is minimum where $\frac{\partial V_{M}\left(r_{0}\right)}{\partial r}=0$
$r_{\text {min }}=r_{e}$
$\epsilon=D$
4.3

1 mark
2.5 marks
2.5 marks
4.4
a) X
1 mark
4.5
$M \mathrm{~g} / n$

1 mark
4.6
i) $\Delta z=r_{A B}-\sqrt{r_{A B}^{2}-a^{2}}$
ii) $\mu=\frac{\left(r_{A B}-\sqrt{r_{A B}^{2}-a^{2}}\right)}{a}$
4.7

> i) At $x=0: F_{z}=-\frac{\partial V}{\partial z}=-4 D \alpha^{2}\left(r-r_{e}\right) \frac{z}{r}=\frac{M g}{n}$ $r \frac{z}{r}-r_{e} \frac{z}{r}=-\frac{M g}{4 n D \alpha^{2}}$ $z(0)=\sqrt{r_{e}^{2}-a^{2}}-\frac{M g}{4 n D \alpha^{2}}$
> ii) At $x=a: F_{z}=-2 D \alpha^{2}\left(r-r_{e}\right)=\frac{M g}{n}$ $z(a)=r_{e}-\frac{M g}{2 n D \alpha^{2}}$

4 marks

4 marks

4.9

$$
\mu=\frac{(0.5 \AA)-0.039 \AA}{1.5 \AA}=0.31
$$

Problem 5

Analysis of a solid mixture containing iron and iron oxides

5.1 i) | Method A$)$ |
| :--- |
| $\mathrm{FeO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ |
| $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ |
| $\mathrm{Method} \mathrm{B})$ |
| $\mathrm{B}) \mathrm{Fe}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{FeSO}_{4}(\mathrm{aq})$ |

ii)

$$
\begin{aligned}
& n(\mathrm{Fe})=0.031 \mathrm{~mol} \\
& n(\mathrm{FeO})=0.017 \mathrm{~mol} \\
& n\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=0.011 \mathrm{~mol}
\end{aligned}
$$

5.2 i)

$$
\begin{aligned}
& \mathrm{Fe}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \\
& \mathrm{FeO}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{FeCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

ii) $V=77.7 \mathrm{~mL}$

2 marks
iii) $\begin{aligned} & \mathrm{Fe}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2} \\ & \mathrm{~V}=0.757 \mathrm{~L}\end{aligned}$

2 marks

Calculations using molar volume at $25^{\circ} \mathrm{C}$ have also been accepted.

