Regional Mathematical Olympiad-2023

1. Let \mathbb{N} be the set of all natural numbers and $S=\left\{(a, b, c, d) \in \mathbb{N}^{4}: a^{2}+b^{2}+c^{2}=d^{2}\right\}$. Find the largest positive integer m such that m divides $a b c d$ for all $(a, b, c, d) \in S$.

Solution

Since $d^{2} \equiv 0,1(\bmod 4)$ at most one of a, b, c is odd. Therefore 4 divides $a b c d$. Also, if 3 does not divide each of a, b and c then

$$
d^{2}=a^{2}+b^{2}+c^{2} \equiv 1+1+1 \equiv 0 \quad(\bmod 3)
$$

Thus 3 divides $a b c d$. Therefore 12 divides $a b c d$ and if m is the largest positive integer such that m divides all $a b c d \in S$ then $m=12 k$ for some positive integer k. But $(1,2,2,3) \in S$ and 1.2.2.3 $=12$. Hence $k=1$ and $m=12$.

Remarks

The set S is infinite because $\left(n, n+1, n(n+1), n^{2}+n+1\right) \in S$ for every positive integer n.
2. Let ω be a semicircle with $A B$ as the bounding diameter and let $C D$ be a variable chord of the semicircle of constant length such that C, D lie in the interior of the $\operatorname{arc} A B$. Let E be a point on $A B$ such that $C E$ and $D E$ are equally inclined to the line $A B$. Prove that
(a) the measure of $\angle C E D$ is a constant;
(b) the circumcircle of triangle $C E D$ passes through a fixed point.

Solution

Construct the circle with $A B$ as diameter and let this circle be Ω. Draw $C K \perp A B$ with K on $A B$. Let $C K$ produced meet Ω again in P. Join $E P$. Observe that

$$
\angle D E B=\angle C E K=\angle P E K
$$

Hence $\angle P E K+\angle C E K+\angle C E D=180^{\circ}$. Therefore P, E, D are collinear. This shows that

$$
\angle C E D=2 \angle C P D
$$

is a constant. If O is the centre of Ω then we get $\angle C O D=2 \angle C P D=\angle C E D$. Hence the circumcircle of triangle $C E D$ passes through O which is a fixed point.
3. For any natural number n, expressed in base 10 , let $s(n)$ denote the sum of all its digits. Find all natural numbers m and n such that $m<n$ and

$$
(s(n))^{2}=m \quad \text { and } \quad(s(m))^{2}=n .
$$

Solution

Let $m<n$ be such natural numbers. Let

$$
m=10^{k-1} a_{k-1}+10^{k-2} a_{k-2}+\cdots+10 a_{1}+a_{0}
$$

be a k-digit number. Then we have

$$
10^{k-1} \leq m<n=s(m)^{2}=\left(a_{k-1}+a_{k-2}+\cdots+a_{1}+a_{0}\right)^{2} \leq 9^{2} k^{2} .
$$

If $k \geq 5$, this is not possible. Hence $k \leq 4$.
If $k=4$, then

$$
m=1000 a_{3}+100 a_{2}+10 a_{1}+a_{0}<\left(a_{3}+a_{2}+a_{1}+a_{0}\right)^{2} \leq 36^{2}=1296 .
$$

This shows that $a_{3}=1$. In this case

$$
m=1000+100 a_{2}+10 a_{1}+a_{0}<\left(1+a_{2}+a_{1}+a_{0}\right)^{2} \leq 28^{2}=784,
$$

which is impossible. Hence m must be a 3 -digit number. Again

$$
m=100 a_{2}+10 a_{1}+a_{0}<\left(a_{2}+a_{1}+a_{0}\right)^{2} \leq 27^{2}=729 .
$$

Hence $a_{2} \leq 7$. If $a_{2}=7$, then

$$
m=700+10 a_{1}+a_{0}<\left(7+a_{1}+a_{0}\right)^{2} \leq 25^{2}=625,
$$

which is not possible. Similarly, $a_{2}=6$ gives

$$
m=600+10 a_{1}+a_{0}<\left(6+a_{1}+a_{0}\right)^{2} \leq 24^{2}=576,
$$

which again is impossible. If $a_{2}=5$, we obtain the maximal digital sum 23 when $a_{1}=a_{0}=9$. Otherwise $s(m) \leq 22$ and

$$
m=500+10 a_{1}+a_{0}<n=s(m)^{2} \leq 22^{2}=484 .
$$

Thus we can also rule out $a_{2}=5$. Therefore $a_{2} \leq 4$. This means, $m \leq 22^{2}$.
Now we can search which squares up to 22^{2} admit an n such that $m=(s(n))^{2}$ and $n=(s(m))^{2}$. The first such square is $m=81=9^{2}$. But in this case $n=s(m)^{2}=81$. But now $m=n$ violating $m<n$. The next square is $m=169=13^{2}$. In this case $s(m)^{2}=16^{2}=256=n$ and $s(n)^{2}=13^{2}=169$. Thereafter, no square satisfies this. Thus we get the pair

$$
(m, n)=(169,256) .
$$

4. Let Ω_{1}, Ω_{2} be two intersecting circles with centres O_{1}, O_{2} respectively. Let l be a line that intersects Ω_{1} at points A, C and Ω_{2} at points B, D such that A, B, C, D are collinear in that order. Let the perpendicular bisector of segment $A B$ intersect Ω_{1} at points P, Q; and the perpendicular bisector of segment $C D$ intersect Ω_{2} at points R, S such that P, R are on the same side of l. Prove that the midpoints of $P R, Q S$ and $O_{1} O_{2}$ are collinear.

Solution

Let the midpoints of segments $P Q, O_{1} O_{2}, R S$ be denoted by X, Y, Z respectively.
We observe that B is the reflection of A in line $P Q$. Hence B is the orthocentre of $\triangle C P Q$.
Hence, $O_{1} X=B C / 2$. Similarly, $O_{2} Z=B C / 2$.
By the S-A-S test, $\Delta X O_{1} Y \cong \Delta Z O_{2} Y$; hence $X-Y-Z$ with $X Y=Y Z$.
The endpoints of segments $P R, X Z, Q S$ lie on parallel lines $P Q$ and $R S$, so their midpoints are collinear.
5. Let $n>k>1$ be positive integers. Determine all positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$ which satisfy

$$
\sum_{i=1}^{n} \sqrt{\frac{k a_{i}^{k}}{(k-1) a_{i}^{k}+1}}=\sum_{i=1}^{n} a_{i}=n .
$$

Solution 1

By A.M-G.M inequality we have

$$
\frac{(k-1) a_{i}^{k}+1}{k} \geq\left(a_{i}^{k(k-1)}\right)^{1 / k}=a_{i}^{k-1}
$$

which implies $\sqrt{\frac{k a_{i}^{k}}{(k-1) a_{i}^{k}+1}} \leq \sqrt{a_{i}}$. Hence

$$
\sum_{i=1}^{n} \sqrt{a_{i}} \geq \sum_{i=1}^{n} \sqrt{\frac{k a_{i}^{k}}{(k-1) a_{i}^{k}+1}}=\sum_{i=1}^{n} a_{i}=n
$$

But by Cauchy-Schwarz inequality we have

$$
\sum_{i=1}^{n} \sqrt{a_{i}} \leq \sqrt{n\left(\sum_{i=1}^{n} a_{i}\right)}=n
$$

Therefore

$$
n \geq \sum_{i=1}^{n} \sqrt{a_{i}} \geq \sum_{i=1}^{n} \sqrt{\frac{k a_{i}^{k}}{(k-1) a_{i}^{k}+1}}=\sum_{i=1}^{n} a_{i}=n
$$

and hence equality holds everywhere which implies $a_{i}=1$ for $i=1,2, \ldots, n$.

Solution 2

Claim: For any nonnegative real number b we have $\frac{k b^{k}}{(k-1) b^{k}+1} \leq b$.
This inequality holds iff

$$
(b-1)\left(k b^{k-1}-\left(b^{k-1}+b^{k-2}+\cdot+1\right)\right) \geq 0 .
$$

Observe that if $b \geq 1$ then

$$
k b^{k-1}-\left(b^{k-1}+b^{k-2}+\cdot+1\right) \geq 0
$$

and if $b \leq 1$ then

$$
k b^{k-1}-\left(b^{k-1}+b^{k-2}+\cdot+1\right) \leq 0 .
$$

Combining these two cases we obtain

$$
(b-1)\left(k b^{k-1}-\left(b^{k-1}+b^{k-2}+\cdot+1\right)\right) \geq 0
$$

which proves our claim.
By this claim we have

$$
\sqrt{\frac{k a_{i}^{k}}{(k-1) a_{i}^{k}+1}} \leq \sqrt{a_{i}}
$$

for $i=1,2, \ldots, n$. The rest of the solution is the same as Solution 1 .
6. Consider a set of 16 points arranged in a 4×4 square grid formation. Prove that if any 7 of these points are coloured blue, then there exists an isosceles right-angled triangle whose vertices are all blue.

Solution

Let us label the points as illustrated in the above diagram. We can consider the following cases:
Case 1: None of the central 4 points $\{F, G, J, K\}$ is colored.
We can partition the remaining 12 points into the 3 sets $\{A, D, P, M\},\{B, H, O, I\},\{C, L, N, E\}$.
By PHP, at least 3 of the 7 colored points lie in the same set; forming a $45-45-90$ triangle (an isosceles right-angled triangle).
Case 2: At least one of the central 4 points is colored; WLOG let point F be colored.
Subcase 2.1: Points F, C are both colored.
Then, none of the points A, B, G, H, K can be colored, as each of them forms a 45-45-90 triangle along with F, C. The remaining 9 points (out of which 5 are colored) can be partitioned into the 4 sets $\{E, I, J\},\{D, O\},\{L, M\},\{N, P\}$. So by PHP, some set contains atleast 2 colored points, which form a $45-45-90$ triangle along with F.
Subcase 2.2: Point F, I are both colored. By symmetry, this is identical to subcase 2.1.
Subcase 2.3: Point F is colored, but neither C nor I is colored.
Then apart from C, F, I, the remaining 13 points (out of which 6 are colored) can be partitioned into the 5 sets $\{A, B, E\},\{G, J, K\},\{D, O\},\{H, N, P\},\{L, M\}$. So by PHP, some set contains atleast 2 colored points, which form a $45-45-90$ triangle along with F.

