
Regional Mathematical Olympiad-2023

1. Let N be the set of all natural numbers and S = {(a, b, c, d) ∈ N4 : a2 + b2 + c2 = d2}. Find the
largest positive integer m such that m divides abcd for all (a, b, c, d) ∈ S.

Solution

Since d2 ≡ 0, 1 (mod 4) at most one of a, b, c is odd. Therefore 4 divides abcd. Also, if 3 does not
divide each of a, b and c then

d2 = a2 + b2 + c2 ≡ 1 + 1 + 1 ≡ 0 (mod 3).

Thus 3 divides abcd. Therefore 12 divides abcd and if m is the largest positive integer such that m
divides all abcd ∈ S then m = 12k for some positive integer k. But (1, 2, 2, 3) ∈ S and 1.2.2.3 = 12.
Hence k = 1 and m = 12.

Remarks

The set S is infinite because (n, n + 1, n(n + 1), n2 + n + 1) ∈ S for every positive integer n.

2. Let ω be a semicircle with AB as the bounding diameter and let CD be a variable chord of the
semicircle of constant length such that C,D lie in the interior of the arc AB. Let E be a point on
AB such that CE and DE are equally inclined to the line AB. Prove that
(a) the measure of ∠CED is a constant;
(b) the circumcircle of triangle CED passes through a fixed point.

Solution

Construct the circle with AB as diameter and let this circle be Ω. Draw CK ⊥ AB with K on AB.
Let CK produced meet Ω again in P . Join EP . Observe that

∠DEB = ∠CEK = ∠PEK.
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Hence ∠PEK + ∠CEK + ∠CED = 180◦. Therefore P , E, D are collinear. This shows that

∠CED = 2∠CPD

is a constant. If O is the centre of Ω then we get ∠COD = 2∠CPD = ∠CED. Hence the
circumcircle of triangle CED passes through O which is a fixed point.

3. For any natural number n, expressed in base 10, let s(n) denote the sum of all its digits. Find all
natural numbers m and n such that m < n and

(s(n))2 = m and (s(m))2 = n.

Solution

Let m < n be such natural numbers. Let

m = 10k−1ak−1 + 10k−2ak−2 + · · ·+ 10a1 + a0

be a k-digit number. Then we have

10k−1 ≤ m < n = s(m)2 = (ak−1 + ak−2 + · · ·+ a1 + a0)2 ≤ 92k2.

If k ≥ 5, this is not possible. Hence k ≤ 4.

If k = 4, then

m = 1000a3 + 100a2 + 10a1 + a0 < (a3 + a2 + a1 + a0)2 ≤ 362 = 1296.

This shows that a3 = 1. In this case

m = 1000 + 100a2 + 10a1 + a0 < (1 + a2 + a1 + a0)2 ≤ 282 = 784,

which is impossible. Hence m must be a 3-digit number. Again

m = 100a2 + 10a1 + a0 < (a2 + a1 + a0)2 ≤ 272 = 729.

Hence a2 ≤ 7. If a2 = 7, then

m = 700 + 10a1 + a0 < (7 + a1 + a0)2 ≤ 252 = 625,

which is not possible. Similarly, a2 = 6 gives

m = 600 + 10a1 + a0 < (6 + a1 + a0)2 ≤ 242 = 576,

which again is impossible. If a2 = 5, we obtain the maximal digital sum 23 when a1 = a0 = 9.
Otherwise s(m) ≤ 22 and

m = 500 + 10a1 + a0 < n = s(m)2 ≤ 222 = 484.

Thus we can also rule out a2 = 5. Therefore a2 ≤ 4. This means, m ≤ 222.

Now we can search which squares up to 222 admit an n such that m = (s(n))2 and n = (s(m))2. The
first such square is m = 81 = 92. But in this case n = s(m)2 = 81. But now m = n violating m < n.
The next square is m = 169 = 132. In this case s(m)2 = 162 = 256 = n and s(n)2 = 132 = 169.
Thereafter, no square satisfies this. Thus we get the pair

(m,n) = (169, 256).
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4. Let Ω1,Ω2 be two intersecting circles with centres O1, O2 respectively. Let l be a line that intersects
Ω1 at points A,C and Ω2 at points B,D such that A, B, C, D are collinear in that order. Let the
perpendicular bisector of segment AB intersect Ω1 at points P,Q; and the perpendicular bisector
of segment CD intersect Ω2 at points R,S such that P,R are on the same side of l. Prove that the
midpoints of PR, QS and O1O2 are collinear.

Solution

Let the midpoints of segments PQ,O1O2, RS be denoted by X,Y, Z respectively.
We observe that B is the reflection of A in line PQ. Hence B is the orthocentre of ∆CPQ.
Hence, O1X = BC/2. Similarly, O2Z = BC/2.
By the S-A-S test, ∆XO1Y ∼= ∆ZO2Y ; hence X − Y − Z with XY = Y Z.
The endpoints of segments PR,XZ,QS lie on parallel lines PQ and RS, so their midpoints are
collinear.
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5. Let n > k > 1 be positive integers. Determine all positive real numbers a1, a2, . . . , an which satisfy

n∑
i=1

√
kaki

(k − 1)aki + 1
=

n∑
i=1

ai = n.

Solution 1

By A.M-G.M inequality we have

(k − 1)aki + 1

k
≥
(
a
k(k−1)
i

)1/k
= ak−1

i

which implies

√
kaki

(k − 1)aki + 1
≤ √ai. Hence

n∑
i=1

√
ai ≥

n∑
i=1

√
kaki

(k − 1)aki + 1
=

n∑
i=1

ai = n.

But by Cauchy-Schwarz inequality we have

n∑
i=1

√
ai ≤

√√√√n(

n∑
i=1

ai) = n.

Therefore

n ≥
n∑

i=1

√
ai ≥

n∑
i=1

√
kaki

(k − 1)aki + 1
=

n∑
i=1

ai = n

and hence equality holds everywhere which implies ai = 1 for i = 1, 2, . . . , n.

Solution 2

Claim: For any nonnegative real number b we have
kbk

(k − 1)bk + 1
≤ b.

This inequality holds iff

(b− 1)(kbk−1 −
(
bk−1 + bk−2 + ·+ 1

)
) ≥ 0.

Observe that if b ≥ 1 then
kbk−1 −

(
bk−1 + bk−2 + ·+ 1

)
≥ 0

and if b ≤ 1 then
kbk−1 −

(
bk−1 + bk−2 + ·+ 1

)
≤ 0.

Combining these two cases we obtain

(b− 1)(kbk−1 −
(
bk−1 + bk−2 + ·+ 1

)
) ≥ 0

which proves our claim.

By this claim we have √
kaki

(k − 1)aki + 1
≤
√
ai

for i = 1, 2, . . . , n. The rest of the solution is the same as Solution 1.
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6. Consider a set of 16 points arranged in a 4× 4 square grid formation. Prove that if any 7 of these
points are coloured blue, then there exists an isosceles right-angled triangle whose vertices are all
blue.

Solution

Let us label the points as illustrated in the above diagram. We can consider the following cases:

Case 1: None of the central 4 points {F,G, J,K} is colored.
We can partition the remaining 12 points into the 3 sets {A,D,P,M}, {B,H,O, I}, {C,L,N,E}.
By PHP, at least 3 of the 7 colored points lie in the same set; forming a 45− 45− 90 triangle (an
isosceles right-angled triangle).

Case 2: At least one of the central 4 points is colored; WLOG let point F be colored.

Subcase 2.1: Points F,C are both colored.
Then, none of the points A,B,G,H,K can be colored, as each of them forms a 45−45−90 triangle
along with F,C. The remaining 9 points (out of which 5 are colored) can be partitioned into the
4 sets {E, I, J}, {D,O}, {L,M}, {N,P}. So by PHP, some set contains atleast 2 colored points,
which form a 45− 45− 90 triangle along with F .

Subcase 2.2: Point F, I are both colored. By symmetry, this is identical to subcase 2.1.

Subcase 2.3: Point F is colored, but neither C nor I is colored.
Then apart from C,F, I, the remaining 13 points (out of which 6 are colored) can be partitioned into
the 5 sets {A,B,E}, {G, J,K}, {D,O}, {H,N,P}, {L,M}. So by PHP, some set contains atleast 2
colored points, which form a 45− 45− 90 triangle along with F .

———-0———-
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