Regional Mathematical Olympiad-2023 solutions

1. Given a triangle $A B C$ with $\angle A C B=120^{\circ}$. The point L is marked on the side $A B$ so that $C L$ is the bisector of $\angle A C B$. The points N and K are marked on the sides $A C$ and $B C$, respectively, so that $C N+C K=C L$. Prove that the triangle $K L N$ is equilateral.

Solution 1

Let $C N=x$ and $C K=y$. Then $C L=x+y$. By using cosine rule we obtain

$$
N L^{2}=x^{2}-x(x+y)+(x+y)^{2}=x^{2}+x y+y^{2}=y^{2}-y(x+y)+(x+y)^{2}=K L^{2} .
$$

Also

$$
N K^{2}=x^{2}+y^{2}-2 x y \cos 120^{\circ}=x^{2}+x y+y^{2} .
$$

Hence $N L=K L=N K$ and the triangle $K L N$ is equilateral.

Solution 2

Taking $K N$ as base, draw the equilateral triangle $K M N$ such that C and M are on opposite sides of $K N$. Since

$$
\angle K C N+\angle K M N=180^{\circ},
$$

$C K M N$ is cyclic. Then

$$
\angle K C M=\angle K M N=60^{\circ}
$$

which implies that L lies on the ray $C M$. Also, by application of Ptolemy's Theorem,

$$
C M=C K+C N=C L
$$

which implies $M \equiv L$.
2. Given a prime number p such that the number $2 p$ is equal to the sum of the squares of some four consecutive positive integers. Prove that $p-7$ is divisible by 36 .

Solution

If $n>1$ is such that

$$
2 p=(n-1)^{2}+n^{2}+(n+1)^{2}+(n+2)^{2}=4 n^{2}+4 n+6
$$

then

$$
p=2 n(n+1)+3>3 .
$$

Observe that if $n \equiv 0(\bmod 3)$ or $n \equiv 2(\bmod 3)$ then $p \equiv 0(\bmod 3)$ and hence can't be a prime. Therefore $n \equiv 1(\bmod 3)$. Write $n=3 k+1$ for some positive integer k. Observe that

$$
p-7=2\left(n^{2}+n-2\right)=2(n-1)(n+2)=18 k(k+1) \equiv 0 \quad(\bmod 36) .
$$

3. Let $f(x)$ be a polynomial with real coefficients of degree 2 . Suppose that for some pairwise distinct nonzero real numbers a, b, c we have

$$
f(a)=b c ; f(b)=c a ; f(c)=a b .
$$

Determine $f(a+b+c)$ in terms of a, b, c.

Solution

Observe that

$$
a f(a)=b f(b)=c f(c)=a b c .
$$

. Let

$$
P(x)=x f(x)-a b c .
$$

Then $P(x)$ is a polynomial of degree 3 with three distinct roots a, b, c. Therefore

$$
P(x)=k(x-a)(x-b)(x-c)
$$

where k is a real constant. Thus

$$
x f(x)=k(x-a)(x-b)(x-c)+a b c .
$$

Putting $x=0$ gives $k=1$. Hence

$$
f(x)=x^{2}-(a+b+c) x+a b+b c+c a
$$

and

$$
f(a+b+c)=a b+b c+c a .
$$

4. The set X of N four-digit numbers formed from the digits $1,2,3,4,5,6,7,8$ satisfies the following condition:
for any two different digits from 1, 2, 3, 4, 5, 6, 7, 8 there exists a number in X which contains both of them.
Determine the smallest possible value of N.

Solution

Let some digit, say 1 , appear in exactly k numbers from the N given numbers. Hence, 1 forms at most 3 distinct pairs with the remaining 3 digits of any of these k numbers. Since the total number of all distinct pairs formed by 1 and the other 7 numbers $\{2,3,4,5,6,7,8\}$ is equal to 7 , we see that $3 k \geq 7$. So $k \geq 3$. Therefore, each of the digits $1,2,3,4,5,6,7,8$ must appear in at least 3 numbers. Thus, the total number of all digits in N numbers is at least $8.3=24$. But N numbers contain exactly $4 N$ digits. Therefore, $4 N \geq 24$, so $N \geq 6$. The following example shows that there are 6 four-digit numbers satisfying the problem condition:
1234, 1567, 1268, 2357, 3468, 4578.
5. The side-lengths a, b, c of a triangle $A B C$ are positive integers. Let

$$
T_{n}=(a+b+c)^{2 n}-(a-b+c)^{2 n}-(a+b-c)^{2 n}+(a-b-c)^{2 n}
$$

for any positive integer n. If $\frac{T_{2}}{2 T_{1}}=2023$ and $a>b>c$, determine all possible perimeters of the triangle $A B C$.

Solution

Upon simplification we obtain $T_{1}=8 b c$ and $T_{2}=16 b c\left(3 a^{2}+b^{2}+c^{2}\right)$. Hence

$$
\frac{T_{2}}{2 T_{1}}=3 a^{2}+b^{2}+c^{2}
$$

Since $a>b>c$ we have $404<a^{2}<675$ which is equivalent to $21 \leq a \leq 25$. Since $2023 \equiv 3(\bmod 4), a$ can't be even for otherwise

$$
b^{2}+c^{2}=2023-3 a^{2} \equiv 3 \quad(\bmod 4)
$$

which is impossible because $b^{2}+c^{2} \equiv k(\bmod 4)$ where $k \leq 2$. If $a=21$ then

$$
b^{2}+c^{2}=2023-3.21^{2}=7.10^{2}
$$

implying $b \equiv 0(\bmod 7)$ and $c \equiv(\bmod 7)$. But then $b=7 b_{1}$ and $c=7 c_{1}$ for some positive integers b_{1} and c_{1} and we get

$$
7\left(b_{1}^{2}+c_{1}^{2}\right)=10^{2}
$$

which is absurd because 7 does not divide $10^{2}=100$. If $a=25$ then

$$
b^{2}+c^{2}=48
$$

implying that 3 divides $b^{2}+c^{2}$ which is true if and only if 3 divides both b and c. Thus there exist positive integers b_{2} and c_{2} such that $b=3 b_{2}$ and $c=3 c_{2}$. But then we obtain

$$
3\left(b_{2}^{2}+c_{2}^{2}\right)=16
$$

which is absurd because 3 does not divide 16. When $a=23$,

$$
b^{2}+c^{2}=2023-1587=436=20^{2}+6^{2} .
$$

Note that $a=23, b=20$ and $c=6$ are side-lengths of a non-degenerate triangle $A B C$ whose perimeter is 49 .
6. The diagonals $A C$ and $B D$ of a cyclic quadrilateral $A B C D$ meet at P. The point Q is chosen on the segment $B C$ so that $P Q$ is perpendicular to $A C$. Prove that the line joining the centres of the circumcircles of triangles $A P D$ and $B Q D$ is parallel to $A D$.

Solution

Choose a point T on the line $Q P$ so that $D T \perp D A$. The points A, P, D, and T are concyclic, so the center of the circle $A P D$ lies on the perpendicular bisector ℓ of $D T$ (notice that $\ell \| A D)$. Next, $\angle Q B D=\angle P A D=\angle Q T D$, so the points B, Q, D, and T are also concyclic. Therefore the centre of the circle $B Q D$ also lies on ℓ.
\qquad

