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Foreword

The Physics Olympiad activity has been attracting an ever growing number of stu-
dents and teachers since it was launched in 1998. A key component of this activity
is the Indian National Physics Olympiad Examination, popularly known as INPhO,
which is conducted by the Homi Bhabha Centre for Science Education around Jan-
uary end each year. To meet the demands of the students and teachers a volume
detailing INPhO problems from 1998-2005 was brought out in 2008. The present
volume which covers the period from 2006-2009 maybe viewed as a continuation of
the same – but with a difference. This time we have included the solutions also,
and, in multiple formats: Brief Solutions and Detailed Solutions. Some of the prob-
lems have been slightly modified or corrected in order to read better. The INPhO
has been a four hour exam. However, we want the reader to work on this book at
a leisurely pace. Credit (marks) has been mentioned in order to give an idea of the
relative difficulty level of each problem.

We urge the readers to attempt the problems and then look at the two sets
of Solutions: Brief and Detailed. In this connection we want to share with the
readers two stories about seminal discoveries in theoretical physics. Both of them
were“problem solving” exercises and fetched the discoverers the Nobel Prize.

On Sunday October 7 1900, Max Planck was confronted with an experimental
black body radiation curve in the high wavelength regime. It was a partial curve
and it deviated from Wien’s theoretical prediction. Planck undertook an exercise
in which he attempted to reconcile Wien’s law at low wavelength with the deviant
experimentally observed behaviour at high wavelength. By evening he was able to
fit the two pieces of this puzzle and come up with an interpolation formula. This
heralded the birth of quantum mechanics and fetched Planck the Noble Prize in
1918.

In 1970 Kenneth Wilson of Cornell University was asked to give a friendly sem-
inar on a research paper published jointly by two Italian physicists Di Castro and
Jona-Lasinio. In other words his colleagues asked him to explain the work, some-
thing that we might ask our friends to do, say over a cup of tea. The deadline for
the seminar was approaching and in a desperate bid to arrive at the final conclusions
of the paper, Wilson invented his “own way”, different from any other. This “own
way” was the beautiful “renormalization group” approach which won him the Nobel
Prize in 1982. In a similar fashion we once again urge the reader to attempt the
problems first and develop their “own way” and not to simply look at the solutions.

In addition the book is peppered with additional comments and minor deriva-
tions. This adds value to the collection. It includes personal descriptions by Planck
and Wilson about their above - mentioned discoveries. And a delightful perspective
by Isidor Issac Rabi, the discoverer of nuclear magnetic resonance, on how not to ap-
proach a physics problem! Along with the historical remarks this aesthetic exercise
raises the book from the level of being merely a “problem book” on physics.

We also invite the readers to write to us pointing out errors and alternate solu-
tions. Last, but certainly not the least, we would like to thank Ms. Sarita Yadav
for discussions and excellent technical assistance.

Dated: Prof. (Dr.) Vijay A. Singh
July 1, 2009 National Co-ordinator, Science Olympiads

Homi Bhabha Centre for Science Education (TIFR)
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Table of Constants

Acceleration due to gravity on
Earth

g 9.80665 m·s−2

Atmospheric pressure Patm 1.01325× 105 Pa
Atomic mass unit 1 u 931.49403 MeV·c−2

Avogadro number NA 6.02214× 1023 mol−1

Boltzman constant k 1.38065× 10−23 J·K−1

Distance between Sun and Earth 1 A.U. 1.49600× 1011 m
Binding energy of hydrogen atom - 13.6058 eV
Magnitude of electron charge e 1.60218× 10−19 C
Mass of the Earth ME 5.97420× 1024 kg
Mass of the electron me 9.10938× 10−31 kg
Mass of the proton mp 1.67262× 10−27 kg
Mass of the Sun M� 1.98892× 1030 kg
Permeability of free space µ0 1.2566× 10−6 H·m−1

Permittivity of free space ε0 8.85420× 10−12 F·m−1

Planck’s constant h 6.62607× 10−34 J·s
Radius of the Earth RE 6.37814× 106 m
Radius of the Sun R� 6.95500× 108 m
Speed of Sound in air cs 340.29 m·s−1

(at room temperature )
Speed of light in vacuum c 2.99793× 108 m·s−1

Stefan-Boltzmann constant σ 5.67040× 10−8 W·m−2·K−4

Surface Tension of water at 200 C - 7.286× 10−2 N·m−1

Universal constant of Gravitation G 6.67428× 10−11 N·m2·kg
−2

Universal gas constant R 8.31447 J·mol−1·K−1

Wien’s constant - 2.89777× 10−3 m·K

5
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Chapter I

Problems

1 INPhO-2006

Indian National Physics Olympiad - 2006

INPhO-2006 Jan. 29, 2006
Maximum Marks: 90

                      

2

1
m

m

30
o

Figure 1: Problem 1

1. In the diagram shown (Fig. (1)), m1 = 1 kg, m2 = 1 kg and coefficient of
friction, both static and dynamic, between m1 and plane is µ = 0.6. The
two masses are connected by a light inextensible string passing over a light
frictionless pulley. Take g = 10 m·s−2.

(a) Find the acceleration of the system.
(b) Find the force of friction and the magnitude of the tension in the string.

[10]

2. A block of uniform mass M is at rest on a table. A disk of mass 2M , radius R
and of the same height as the block, which is initially spinning about its axis
with angular speed ω0, is placed on the table such that it touches the block
(see Fig. (2)). The block – disk system starts moving such that they are in
contact throughout the motion. Coefficient of friction, both kinetic and static,
between the table and block and between the table and disk is µ. Friction
between disk and the block may be ignored.

(a) Obtain an expression for the initial acceleration of the block – disk system.

9
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Figure 2: Problem 2

(b) Obtain an expression for the time t∗ at which pure rolling (i.e. rolling
without slipping) starts.

(c) Obtain an expression for the total time ttot in which the block comes to
the rest. Assume that pure rolling persists for t > t∗.

[14]

3. An ideal gas goes through a reversible cycle which consists of two isobaric and
two adiabatic processes as shown in the P − V diagram (Fig. (3)).

P
1

2

P
adiabats

c
d

a b

V

P

Figure 3: Problem 3

(a) Obtain an expression for the efficiency of the cycle in terms of the tem-
peratures {Ta, Tb, Tc, Td}.

(b) Obtain an expression for the efficiency of the cycle in terms of the pres-
sures {P1, P2} and γ. Here γ is the ratio of the specific heat at constant
pressure and specific heat at constant volume.

(c) Draw the equivalent V − T diagram for this cycle.
[Note: V along y-axis and T along x-axis.]

(d) State the expression for the corresponding Carnot cycle working with the
same gas and between the highest and lowest temperatures defined by
the above cycle. Which of these two cycles has the higher efficiency?

[12]

4. A thin plano-convex lens of radius R = 10 cm, refractive index µ2 = 1.5 has
its curved surface in liquid of refractive index µ3 = 1.2 and the plane surface
exposed to air of refractive index µ1 = 1.0. A self luminous particle oscillating
simple harmonically with small amplitude

√
2 cm is placed on the axis of the

lens as shown in Fig. (4). Determine the orientation, amplitude and phase

©HBCSE-TIFR 10
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Figure 4: Problem 4

difference of the oscillating final image with respect to the object.
[8]

5. A thin circular disk of radius R is uniformly charged with charge σ (σ > 0) per
unit area. The disk rotates about its axis OX with a uniform angular speed
ω (see Fig. (5)). A small magnetic dipole of moment ~µ is located at P (a, 0, 0)
on the axis of the disk (a > 0).
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Figure 5: Problem 5

(a) Obtain the expression for the magnetic moment of the disk?

(b) Obtain the expression for the magnetic field ~B due to the rotating disk
at P?

(c) Obtain the approximate expression for ~B when a >> R.
(d) Obtain the force on the dipole placed at P given that a >> R.

[Note: You can use the formula for ~B on the axis of a circular current, namely

~|B| = µ0

4π

2iπr2

(r2 + x2)3/2
]

[14]

6. A 1.00 kW cylindrical (monochromatic) laser light beam of radius δ is used
to levitate a solid aluminium sphere of radius R by focusing it on the sphere

©HBCSE-TIFR 11
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from below (see Fig. (6)). The laser light is reflected by the aluminium sphere
without any absorption.

R

O

δ

θ θ

Figure 6: Problem 6

(a) Take the momentum of each photon in the light beam to be p. Express
the force exerted on the aluminium sphere by the beam in terms of p, δ,
R, and n where n is the number of photons per unit area per unit time.

(b) Now consider the special case δ << R. Calculate the mass of the sphere,
assuming that it floats freely on the light beam?

[Hint: Part (b) can be done independently of Part (a)] [10]

Figure 7: Demonstrations of laser levitation

7. An electron in the Li++ ion makes a transition from n = 4 to n = 3 state.

(a) Find the wavelength of emitted photon in this process. To what region
of the electro-magnetic spectrum does this wavelength belong?

©HBCSE-TIFR 12
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(b) This photon impinges on a photoelectric sensitive metal having work
function 3.20 eV. Calculate the maximum kinetic energy and the corre-
sponding de Broglie wavelength of emitted photo-electron.

( Ionization energy of hydrogen atom = 13.60 eV) [8]

8. Lyttleton - Bondi Model for the Expansion of the Universe*
In 1959 Lyttleton and Bondi suggested that the expansion of the Universe
could be explained on the basis of Newtonian mechanics if matter carried a net
electric charge. Imagine a spherical volume of astronomical size and radius R
containing un-ionized atomic hydrogen gas of uniform density η(= 10−26kg·m−3),
and assume that the proton charge ep = −(1 + y)e, where e is the electron
charge.

(a) Obtain the value of y for which the electrostatic repulsion becomes larger
than the gravitational attraction and the gas expands.

(b) Obtain an expression for the force of repulsion on an atom which is at
a distance R from the centre of the spherical volume. Hence show that
the radial velocity is proportional to R. Let us label the proportionality
constant as H. Assume that the density is maintained constant by the
continuous creation of matter in space. Assume also that the value of y is
larger than the equilibrium value calculated in part (a) above and hence
ignore gravity.

(c) Calculate the numerical value of H. Take the value of y to be one order of
magnitude larger than the equilibrium value calculated in part (a) above

(d) Given that at time t = 0, the volume of the Universe was V0, obtain an
expression for the volume expansion of the Universe.

(e) Why do you think the Lyttleton - Bondi model has been largely discarded
by the scientific community?

[14]
*Ref. R.A.Lyttleton and H.Bondi, Proceedings of Royal Society of London,
Volume A 252, page 313 - 333, (1959)

Raymond Arthur Lyttleton (7 May 1911-16 May
1995) : English mathematician and theoretical as-
tronomer who researched stellar evolution and composi-
tion. In 1939, with Fred Hoyle, he demonstrated the large
scale existence of interstellar hydrogen, refuting the ex-
isting belief that space was devoid of interstellar gas. To-
gether, in the early 1940’s, they applied nuclear physics
to explain how energy is generated by stars. In his own
monograph (1953) Lyttleton described stability of rotat-
ing liquid masses, which he extended later to explain that

the Earth had a liquid core resulting from a phase change associated with a com-
bination of intense pressure and temperature. With Hermann Bondi, in 1959, he
proposed the electrostatic theory of the expanding universe. He authored various
astronomy books. One of them “Mysteries of the Solar System”, was co-authored
with Edwin Land and was quite popular.

©HBCSE-TIFR 13
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Sir Hermann Bondi (1 Nov.1919-10 Sept.2005) :
Austrian-born British mathematician and cosmologist
who, with Fred Hoyle and Thomas Gold, formulated the
steady-state theory of the universe (1948). Their theory
addressed a crucial problem: “How do the stars continu-
ally recede without disappearing altogether?” Their ex-
planation was that the universe is ever-expanding, with-
out a beginning and without an end. Further, they said,

since the universe must be expanding, new matter must be continually created in
order to keep the density constant, by the interchange of matter and energy. The
theory was eclipsed in 1965, when Arno Penzias and Robert Wilson discovered a
radiation background in microwaves giving convincing support to the “big bang”
theory of creation which is now accepted.

“Sometimes I am a little unkind to all my many friends in education
... by saying that from the time it learns to talk every child makes a
dreadful nuisance of itself by asking ‘Why?’. To stop this nuisance so-
ciety has invented a marvellous system called education which, for the
majority of people, brings to an end their desire to ask that question.
The few failures of this system are known as scientists.”

©HBCSE-TIFR 14
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2 INPhO-2007

Indian National Physics Olympiad - 2007

INPhO-2007 Jan. 28, 2007
Maximum Marks: 80

1. The polar coordinates of a particle of mass m moving in a trajectory under
the influence of a force ~F are given by: r = at and θ = ωt, where a and ω are
constants. Note acceleration in polar coordinates is

ar = r̈ − rθ̇2, aθ = rθ̈ + 2ṙθ̇

(a) State the momentum vector ~p and the force vector ~F .

(b) Evaluate the work done ∆W =
∫
~F · d~r explicitly if the initial radial

distance of the particle is negligible and the final distance is r.

(c) Sketch the trajectory. [6]

2. A small spherical ball undergoes an elastic collision with a rough horizontal
surface. Before the collision, it is moving at an angle θ to the horizontal (see
Fig. (8)). You may assume that the frictional force obeys the law f = µN
during the contact period, where N is the normal reaction on the ball and µ
is the coefficient of friction.

Surface

x

y

θ

Figure 8: Problem 2

(a) Obtain θm(µ) so that the subsequent horizontal range of the ball after
leaving the horizontal surface is maximized.

(b) State the allowed range of θm.

[10]

3. A cylindrical block of length 0.4 m and uniform area of cross section 0.04 m2 is
placed in concentric contact with a metal disc of mass 0.4 kg and of the same
cross section (see Fig. (9)). The left face (A) of the cylinder is maintained
at a constant temperature of 400 K and the initial temperature of the disc is
θi = 280.0 K . If the thermal conductivity of the material of the cylinder is 10
W·m−1·K−1 and the specific heat of the material of the disc is

C = C0[1 + α(θ − θi)]

©HBCSE-TIFR 15



H
B
C
SE

2 INPhO-2007 Problems

where C0= 600.0 J·kg−1·K−1 and α = 0.010 K−1, then:
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Figure 9: Problem 3

(a) How long will it take for the temperature of the disc to increase to 340 K?
Assume that there is no heat loss from the disc.

(b) Repeat the exercise of part (3a) if the specific heat of the disc was C = C0,
i.e. temperature independent.

(c) Which process, (3a) or (3b) takes longer time? Why?

Assume that no heat is lost by radiation or convection and that the process of
heat transfer is solely conduction. [10]

4. A transparent sphere of radius R and refractive index n is at rest on a hori-
zontal surface. A ray of light is incident parallel to the vertical diameter and
at a distance d from it.

d
ia
m
et
er

ray
d

Figure 10: Problem 4

(a) Obtain an expression for d in terms of refractive index n and radius R
such that the ray intersects the diameter at the point of emergence (see
Fig. (10)).

(b) What is the allowed range of n for the above possibility to occur?

[8]

5. (a) Find the electric field due to an infinite line of charge with linear charge
density λ at a distance r from the line.

(b) Using a point at perpendicular distance a from the line charge (i.e. r = a)
as a reference, find the potential at a distance r from the line.

©HBCSE-TIFR 16
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(c) Now two line charges, with densities λ and −λ are kept distance 2d
apart as shown in Fig. (11). Consider a plane perpendicular to the line
charges (e.g. the plane of this paper). Obtain explicit expression for the
equipotential lines in this plane.

2d

−λ +λ

Figure 11: Problem 5

(d) Make a clear plot of these equipotential lines and comment briefly on
them. State the shape of the equipotential surfaces.

(e) Now these line charges start moving parallel to each other with speed v.
Obtain the speed at which the magnitudes of electric and magnetic forces
are equal to each other.

[10]

6. An equilateral triangle of side S carrying a current I1 is placed with its base
at a distance a from an infinite straight wire carrying a current I2 parallel to
the base (see Fig. (12)).

y

 −a

(0,0) x

1

I2

I

(0,     )

Figure 12: Problem 6

(a) Find the force on the triangle.

(b) Sketch the magnitude of this force as a function of S/a.

[6]

7. A narrow beam of monochromatic light from source S of wave length 6000.0 Å
moves along the positive x-axis and is incident on mirror M. The area vector
of M is 0.04(−ı̂+ ̂) m2. The mirror has reflectivity unity, in other words the
mirror is a perfect reflector. An electrically insulated metal surface of total
area 0.04 m2 is placed parallel to x-axis and above the mirror to receive the
reflected beam (see Fig. (13)). The work function of the metal is 1.90 eV, its
photoelectric efficiency is 10.0% and generated photoelectrons are immediately
removed from the neighbourhood. The power of the source is 60.0 W. Assume
the metal surface to be large and ignore edge effects. Find out:

©HBCSE-TIFR 17
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Figure 13: Problem 7

(a) The force exerted by the beam on the mirror.

(b) The surface charge density on the metal surface after 10 seconds.

(c) The energy density due to the electric field after 10 seconds.

(d) The range of kinetic energy of emitted electrons.

[10]

8. Height of the Atmosphere

Consider a simplified model for the height to which the atmosphere extends
above the earth’s surface. In this model the atmosphere consists of the di-
atomic gases oxygen and nitrogen in the proportion 21:79 respectively. We
assume that the atmosphere is an ideal gas and air processes are adiabatic.

(a) Obtain an expression for the lapse rate Γ (change in temperature T with
height z above the earth’s surface) in terms of γ, R, g and ma. Here γ is
the ratio of specific heat at constant pressure to specific heat at constant
volume; g, the acceleration due to gravity; R, the gas constant; and ma,
the relevant atomic mass.

(b) What is the change in temperature when we ascend a height of one kilo-
meter?

(c) Consider the above model and express the pressure as a function of the
height z, the lapse rate Γ and the constants {ma, g, and R}. You may
assume that at z = 0, the surface temperature T = T0 and pressure
p = p0.

(d) According to this model what is the height to which the atmosphere
extends? Take T0 = 300 K and p0 = 1 atm.

[10]

9. The Metal Detector
We consider a simple model of the metal detector with a coil (field coil) of
radius Rf and concentric and coplanar smaller coil (called the pick-up coil) of
radius Rp. The number of turns in the field and pick-up coils are Nf and Np

respectively. A sinusoidal current I(t) is passed through field coil.

©HBCSE-TIFR 18



H
B
C
SE

Problems 2 INPhO-2007

(a) State the magnetic field B at the centre of the set-up due to I(t).

(b) We approximate the magnetic field throughout the interior of the smaller
coil by the magnetic field calculated in part (9a). Obtain an expression
for the induced emf in the pick-up coil.
[Note that this approximation underestimates the flux by about the 10%.]

(c) Given the following values:
f = 5000 Hz
maximum current I0 = 0.5 A
maximum induced emf E0 = 0.25 V
Rp = 0.025 m
Rf = 0.05 m.
Calculate the product NpNf .

(d) What is the mutual inductance on the field coil due to the pick up coil?

(e) The optimization problem is to use the least amount of wire with the
given quantities in part (9c) being kept fixed. Under these constraints
determine the allowed ranges of Np and Nf individually.

(f) Qualitatively describe what happens to the induced emf when you place
small disks of the following material at the centre of the pick-up coil:

i. Iron

ii. Wood

iii. Copper

[10]

©HBCSE-TIFR 19
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Metal Detector: The operation of metal detectors
is based upon the principle of electromagnetic induction.
Metal detectors contain one or more inductor coils that
are used to interact with metallic elements which are of-
ten hidden or invisible. A pulsing current is applied to
the coil, which then induces a magnetic field. When the
magnetic field of the coil moves across metal, such as a
coin, the field induces electric currents (called eddy cur-

rents) in the coin. The eddy currents induce their own magnetic field which generates
an opposite current in the coil, which in turn induces a signal indicating the presence
of metal.

©HBCSE-TIFR 20
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3 INPhO-2008

Indian National Physics Olympiad - 2008

INPhO-2008 Feb. 03, 2008
Maximum Marks: 80

1. We define three quantities as follow:

A = mec
2, B = h/mec, C = e2/2ε0ch

where me is electron mass and other symbols have their usual meanings. For
the hydrogen atom, express the radius of the nth Bohr orbit rn, the energy
level En, and the Rydberg constant R in terms of any two of {A, B, C }.

[5]

2. Consider a ball which is projected horizontally with speed u from the edge of a
cliff of height H as shown in the Fig. (14). There is air resistance proportional
to the velocity in both x and y direction i.e. the motion in the x (y) direction
has air resistance with the deceleration given by the c vx (c vy) where c is the
proportionality constant and vx(vy) is the component of the instantaneous
velocity in the x (y) direction. Take the downward direction to be negative.
The acceleration due to gravity is g. Take the origin of the system to be at
the bottom of the cliff as shown in Fig. (14).
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Figure 14: Problem 2

(a) Obtain expressions for x(t) and y(t).

(b) Obtain the expression for the equation of trajectory.

(c) Make a qualitative, comparative sketch of the trajectories with and with-
out air resistance.

(d) Given that height of cliff is H = 500 m and c = 0.05 s−1, obtain the ap-
proximate time in which the ball reaches the ground. Take g = 10 m·s−2.

[12]

3. Free Standing Tower
Consider a tower of constant density (ρ) and cross sectional area (A) (see Fig.
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(15)) at the earth’s equator. The tower has a counter weight at one end. It is
free standing. In other words its weight is balanced by the outward centrifugal
weight so that it exerts no force on the ground beneath it and tension in the
tower is zero at both ends. Consider the earth to be an isolated heavenly body
and ignore gravitational effects due to the other heavenly bodies such as moon.
Further assume that there is no bending of the tower.
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Figure 15: Problem 3

(a) Draw the free body diagram of the small element of this tower at distance
r from the centre of the earth.

(b) Let T (r) be the tensile stress (tension per unit area) in the tower. Use
Newton’s equations to write down the equation for dT (r)/dr in terms of
G, ρ, geostationary height Rg from the earth’s centre and earth’s mass
M .

(c) Taking the boundary condition (T (R) = T (H) = 0), obtain the height
of tower H in terms of R and Rg. Note that R is the radius of earth.
Calculate the value of H.

(d) The tensile stress in the tower changes as we move from r = R to r = H.
Sketch this tensile stress T (r).

(e) Steel has density of ρ = 7.9× 103 kg·m−3. Its breaking tensile strength is
6.37 GPa. Calculate the maximum stress in the tower. State if a tower
made of steel would be feasible.

Note: M= 5.98×1024 kg; R = 6370 km ; Rg = 42 300 km

[12]
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Earth

Cable for the elevator

orbit

Geosynchronous

Centre of mass

Counterweight

Climber

Space elevator: The space elevator seems like an idea out of a science fiction
movie. Put simply its a giant elevator from earth running up to a satellite
in space. As crazy as it sounds, a lot of people believe it could work. The
technology is based on nanotubes, and they believe that they could create a
ribbon cable that could hold a tremendous amount of weight. A runner car
will then go up and down on this cable.

4. Two identical walls, each of width w (= 0.01 m), are separated by a distance
d (= 0.10 m) as shown in Fig. (16). Temperatures of the external face of the
walls are fixed (T1 and T2, T2 > T1). Coefficient of thermal conductivity of
wall is kw = 0.72 W·m−1·K−1 . We define

T0 =
T1 + T2

2
, ∆ = T2 − T1 and δ = T ′′ − T ′ (1)

where T ′ and T ′′ are the temperatures of the internal face of the walls 1 and
2 respectively. Then δ will depend on the type of heat transfer process in
central region (of width d) between the walls i.e. on the conduction, radiation
or convection heat transfer. Assume that the heat transfer is a steady state
process.
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Figure 16: Problem 4
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(a) Write down the expression for heat transfer flux qw (W·m−2) inside the
wall 1 in terms of kw, T1, T ′, and w. Similarly also write the expression
for wall 2.

(b) Rewrite qw in terms of ∆, δ, kw, and w.

As mentioned above, in the central region between the walls, heat is trans-
mitted by conduction, convection and radiation. Also due to the steady state
process, the corresponding fluxes are equal to qw. In what follows we will cal-
culate the heat transfer fluxes between the walls due to these three processes
each of these processes being considered separately.

Radiation process will take place without the presence of material medium
in the central region between the walls. We assume that the central region
between the walls is vacuum. Let ε be the emissivity of the walls and E1 and
E2 be the total heat flux due to radiation from wall 1 to 2 and vice versa. Thus
E1 = εσT ′4 + (1− ε)E2 where σ is the Stefan-Boltzmann constant. Similarly
one may write the equation for E2.

(c) The net heat transfer is qr = E2 − E1. Write the expression for qr in
terms of ε, T ′′, and T ′.

(d) Rewrite qr in terms of {kw, ∆, T0, σ, ε and w}.
[ Hint: Eliminate δ using δ2 << T0

2. ]

(e) Calculate qr if ε = 0.9.

In the following two parts we are considering only convection between the
walls.

(f) Now we assume that central region is filled with air of coefficient of ther-
mal conductivity ka. In this condition, convected heat transfer between
walls will take place. Equation for flux due to this process is given by

qcv =
Nu ka
d

(T ′′ − T ′)

where Nu is called the Nusselt number and for the given system Nu = 6.4.

Due to the steady state nature of the process qw = qcv. Express qcv in
terms of {kw, ka, ∆, w, d, and Nu}.

(g) Calculate the value of qcv if ka = 0.026 W·m−1·K−1.

(h) Instead of air, the central region is now filled with sheathing material
having coefficient of thermal conductivity ks. Hence heat transfer will
take place by conduction between walls. Express heat transfer flux qcd
in terms of {ks, kw, d, w, and ∆}. We assume that no radiation passes
through sheathing material.

(i) Taking ks = 0.05 W·m−1·K−1, calculate the value of qcd.

(j) Considering all possible heat transfer process in the central region be-
tween the walls, which insulation (sheathing, air, or vacuum) is the most
efficient?

[16]
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5. Sunlight falls on the convex surface of the plano - convex lens of aperture
0.080 m. The radius of curvature of the convex surface of the lens is 0.100 m.
The refractive indices of the material of the lens for extreme red and violet
colours of sunlight are 1.600 and 1.700 respectively. [Given that: Radius of
the Sun = 6.96× 108m, Distance between Sun and Earth = 1.5× 1011m.]

(a) Calculate the positions of the observed image of the Sun with violet and
red centre.

(b) Calculate the sizes of the observed image of the sun with violet and red
centre.

[10]

6. Determination of The Speed of Light:
The speed of light maybe determined by an electrical circuit using low fre-
quency ac fields only. Consider the arrangement shown in the Fig. (17). A
sinusoidally varying voltage V0 cos(2πft) is applied to a parallel plate capaci-
tor C1 of radius a and separation s and also to the capacitor C2. The charge
flowing into and out of C2 constitutes the current in the two rings of radii b
and separation h. When the voltage is turned off the two sides (the capacitor
C1 on one side and the rings on the other) are exactly balanced. Ignore wire
resistance, inductance and gravitational effects.

s

C
1

h

2

b

V0 2 πftcos 

C

a

Figure 17: Problem 6

(a) Obtain an expression for the time-averaged force between the plates of
C1.

(b) Obtain an expression for the time-averaged force between the rings. The
magnetic force between the two rings maybe approximated by those due
to long straight wires since b >> h.

(c) Assume that C2 and the various distances are so adjusted that the time-
averaged downward force on the upper plate of C1 is exactly balanced
by the time-averaged downward force on the upper ring. Under these
conditions obtain an expression for the speed of light.
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(d) Numerically estimate the speed of light given that: a = 0.10 m, s = 0.005
m, b = 0.50 m, h = 0.02 m, f = 60.0 Hz, C1 = 1.00 nF (nano-farad) and
C2 = 632 µF (micro-farad).
[Hint: Not all the given quantities are required to obtain the estimate.]

[12]

7. An N turn metallic ring of radius a, resistance R, and inductance L is held
fixed with its axis along a spatially uniform magnetic field ~B whose magnitude
is given by B0 sin(ωt).

(a) Set up the emf equation for the current i in the ring.

(b) Assuming that in the steady state i oscillates with the same frequency ω
as the magnetic field, obtain the expression for i.

(c) Obtain the force per unit length. Further obtain its oscillatory part and
the time-averaged compressional part.

(d) Calculate the time-averaged compressional force per unit length given
that B0 = 1.00 tesla, N = 10, a = 10.0 cm, ω = 1000.0 rad·s−1, R = 10.0
Ω, L = 100.0 mH.

(e) Answer the following two questions without providing rigorous justifica-
tion:

i. For ω/2π = 60 Hz, the ring emits a humming sound. What is the
frequency of this sound?

ii. A capacitor is included in the circuit. How does this affect the force
on the ring?

[13]
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4 INPhO-2009

Indian National Physics Olympiad - 2009

INPhO-2009 Feb. 01, 2009
Maximum Marks: 70

Note: Questions 1-38 is a set of multiple choice questions. Only one of the given
choices is the best choice. Select this most appropriate choice.

1. A block of weight 200 N is at rest on a rough inclined plane of inclination
angle θ = 300. The inclined plane is at rest in the earth’s inertial frame. Then
the magnitude of the force the plane exerts on the block is

(a) 100
√

3 N.
(b) 100 N
(c) 200 N
(d) zero.

2. A spatially uniform magnetic field ~B exists in the circular region S and this
field is decreasing in magnitude with time at a constant rate (see Fig. (18)).

C
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Figure 18: Problem 2

The wooden ring C1 and the conducting ring C2 are concentric with the mag-
netic field. The magnetic field is perpendicular to the plane of the figure.
Then

(a) there is no induced electric field in C1.
(b) there is an induced electric field in C1 and its magnitude is greater than

the magnitude of the induced electric field in C2.
(c) there is an induced electric field in C2 and its magnitude is greater than

the induced electric field in C1.
(d) there is no induced electric field in C2.

3. During negative β decay, an anti-neutrino is also emitted along with the ejected
electron. Then

(a) only linear momentum will be conserved.

(b) total linear momentum and total angular momentum but not total energy
will be conserved.

(c) total liner momentum and total energy but not total angular momentum
will be conserved.

©HBCSE-TIFR 27



H
B
C
SE

4 INPhO-2009 Problems

(d) total linear momentum, total angular momentum and total energy will
be conserved.

4. Five identical balls each of mass m and radius r are strung like beads at
random and at rest along a smooth, rigid horizontal thin rod of length L,
mounted between immovable supports (see Fig. (19)).

����������������������������

Figure 19: Problem 4

Assume 10r < L and that the collision between balls or between balls and
supports are elastic. If one ball is struck horizontally so as to acquire a speed
v, the magnitude of the average force felt by the support is

(a)
5mv2

L− 5r

(b)
mv2

L− 10r

(c)
5mv2

L− 10r

(d)
mv2

L− 5r

5. In Young’s double slit experiment, one of the slits is wider than the other, so
that the amplitude of the light from one slit is double that from the other slit.
If Im be the maximum intensity, the resultant intensity when they interfere at
phase difference φ is given by

(a)
Im
3

(
1 + 2 cos2 φ

2

)
(b)

Im
5

(
1 + 4 cos2 φ

2

)
(c)

Im
9

(
1 + 8 cos2 φ

2

)
(d)

Im
9

(
8 + cos2 φ

2

)
6. A point luminous object (O) is at a distance h from front face of a glass slab

of width d and of refractive index n. On the back face of slab is a reflecting
plane mirror. An observer sees the image of object in mirror (see Fig. (20)).
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Figure 20: Problem 6

Distance of image from front face as seen by observer will be

(a) h+
2d

n
(b) 2h+ 2d

(c) h+ d

(d) h+
d

n

7. A uniform wire of diameter 0.04 cm and length 60 cm made of steel (density
8000 kg·m−3) is tied at both ends under a tension of 80 N. Transverse vibrations
of frequency about 700 Hz will be predominant if the wire is plucked at

(a) 15 cm and held at 30 cm.

(b) 10 cm and held at 20 cm.

(c) 30 cm.

(d) 20 cm and held at 40 cm.

8. Consider a circle of radius R. A point charge lies at a distance a from its
centre and on its axis such that R = a

√
3. If electric flux passing through the

circle is φ then the magnitude of the point charge is

(a)
√

3ε0φ

(b) 2ε0φ

(c) 4ε0φ/
√

3

(d) 4ε0φ

9. A uniform tube 60 cm long, stands vertically with lower end dipping into
water. When its length above water is 14.8 cm and successively again when it
is 48 cm, the tube resonates to a vibrating tuning fork of frequency 512 Hz.
The lowest frequency to which this tube can resonate when it is taken out of
water is nearly

(a) 275 Hz

(b) 267 Hz

(c) 283 Hz

(d) 256 Hz
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10. A binary star has a period (T ) of 2 earth years while distance L between its
components having masses M1 and M2 is four astronomical units. If M1 = MS

where MS is the mass of Sun, the mass of other component M2 is

(a) 3MS

(b) 7 MS

(c) 15 MS

(d) MS

Note: The earth - sun distance is one astronomical unit.

11. A uniform rod of mass 2M is bent into four adjacent semicircles each of radius
r all lying in the same plane (see Fig. (21)). The moment of inertia of the
bent rod about an axis through one end A and perpendicular to plane of rod
is

A r

Figure 21: Problem 11

(a) 22Mr2

(b) 88Mr2

(c) 44Mr2

(d) 66Mr2

12. Two pulses on the same string are described by the following wave equations:

y1 =
5

(3x− 4t)2 + 2
and y2 =

−5

(3x+ 4t− 6)2 + 2
.

Choose the INCORRECT statement.

(a) Pulse y1 and pulse y2 travel along +ve and -ve x axis respectively.

(b) At t = 0.75 s, displacement at all points on the string is zero.

(c) At x = 1 m displacement is zero for all times.

(d) Energy of string is zero at t = 0.75 s.

13. A ray of light enters at grazing angle of incidence into an assembly of five
isosceles right-angled prisms having refractive indices µ1, µ2, µ3, µ4 and µ5

respectively (see Fig. (22)).

µ

µ

µ
4

µ
51

2

3
µ

Figure 22: Problem 13

The ray also emerges out at grazing angle. Then
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(a) µ2
1 + µ2

3 + µ2
5 = 1 + µ2

2 + µ2
4

(b) µ2
1 + µ2

3 + µ2
5 = 2 + µ2

2 + µ2
4

(c) µ2
1 + µ2

3 + µ2
5 = µ2

2 + µ2
4

(d) none of the above

14. The circuit shown in Fig. (23)) is allowed to reach steady state and then a
soft iron core is quickly inserted in the coil such that the coefficient of self
inductance changes from L to nL.

E

+      −

R

L

Figure 23: Problem 14

The current in the circuit at the time of complete insertion is

(a) E/R

(b) nE/R

(c) E/nR

(d) zero

15. Consider an infinitely extending gas cloud in space with two “rigid” spherical
vacuum cavities (see Fig. (24)).

Vacuum
cavity

Vacuum
cavity

Figure 24: Problem 15

Consider only gravitational forces between gas molecules. Then

(a) the cavities would come closer to each other.

(b) the cavities would move away from each other.

(c) the cavities would be static.

(d) the motion of cavities would depend on the size of cavities.

Questions (16) and (17) are based on Fig. (25) and following infor-
mation.
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m

x

O

v

Figure 25: Problems 16 and 17

A rod of mass m and length l is hinged at one end O. A particle of mass m
travelling with speed v collides with the rod at a distance x from the centre
of mass of the rod such that the reaction force at the hinge is zero.

16. Then for the system

(a) linear momentum is conserved.

(b) angular momentum is not conserved about point O.

(c) Linear momentum is not conserved and angular momentum about point
O is conserved.

(d) the mechanical energy is conserved.

17. Then

(a) x = l/6.

(b) x = l/2.

(c) x = l/3.

(d) x = l/4.

18. Consider a huge charge reservoir at potential V . A spherical capacitor C1 is
brought in contact with the charge reservoir and then removed. Next another
spherical capacitor C2 is brought in contact with C1 and removed. We repeat
this process a large number of times. Assume that potential of reservoir does
not change during this exercise. Then the charge on C2 after a very long time
is

(a) C2V

(b) C1V

(c) C2C1V/(C1 + C2)

(d) (C1 + C2)V

19. A particle of mass 1 kg is taken along the path ABCDE from A to E (see
Fig. (26)). The two “hills” are of heights 50 m and 100 m and the horizontal
distance AE is 20 m while the path length is 400 m. The coefficient of friction
of the surface is 0.1. Take g = 10 m·s−2 and

√
3 = 1.73. The minimum work

on the mass required to accomplish this is
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Figure 26: Problem 19

(a) 20 J

(b) 173 J

(c) 400 J

(d) 0 J

20. Two positrons (e+) and two protons (p) are kept on four corners of a square
of side a as shown in Fig. (27). The mass of proton is much larger than
the mass of positron. Let q denote the charge on the proton as well as the
positron. Then the kinetic energies of one of the positrons and one of the
protons respectively after a very long time will be

a

+

+ p

e

e

p

Figure 27: Problem 20

(a)
q2

4πε0a

(
1 +

1

2
√

2

)
,

q2

4πε0a

(
1 +

1

2
√

2

)
(b)

q2

2πε0a
,

q2

4
√

2πε0a

(c)
q2

4πε0a
,

q2

4πε0a

(d)
q2

2πε0a

(
1 +

1

4
√

2

)
,

q2

8
√

2πε0a

21. An electrostatic field line leaves at angle α from point charge q1, and connects
with point charge −q2 at angle β (see Fig. (28)).

α β

+q
1

−q
2

Figure 28: Problem 21

Then the relationship between α and β is
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(a) q1 sin2 α = q2 sin2 β.

(b) q1 tanα = q2 tan β.

(c) q1 sin2 α

2
= q2 sin2 β

2
.

(d) q1 cosα = q2 cos β.

22. A square metal frame in the vertical plane is hinged at O at its centre (see
Fig. (29)).

P N

l

O

Figure 29: Problem 22

A bug moves along the rod PN which is at a distance l from the hinge, such
that the whole frame is always stationary, even though the frame is free to
rotate in the vertical plane about the hinge. Then the motion of the bug will
be simple harmonic, with time period,

(a) 2π
√
l/g

(b) 2π
√

2l/g

(c) 2π
√

4l/g

(d) 2π
√
l/2g

[ Hint: There is a frictional force between the rod and the bug. ]

23. A long flexible inextensible rope of uniform linear mass density λ is being
pulled on a rough floor with horizontal force ~F in such a way that its lower
part is at rest and upper part moves with constant speed v (see Fig. (30)).

The magnitude of ~F will be

���������������
���������������
���������������

���������������
���������������
���������������F

Figure 30: Problem 23

(a) 2λv2

(b) λv2

(c) λv2/2

(d) some function of time and not constant.
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24. A particle moving with initial velocity ~vi = (3ı̂+ 5̂) m·s−1 collides with a
smooth plane wall placed at some orientation to the particle’s trajectory. The
resulting velocity of the particle is ~vf = (−2ı̂− ̂) m·s−1. The coefficient of
restitution for this collision is

(a) 16/33

(b) 5/34

(c) 16/45

(d) 8/45

25. A long straight wire is carrying current I1 in +z direction. The x-y plane con-
tains a closed circular loop carrying current I2 and not encircling the straight
wire. The force on the loop will be

(a) µ0I1I2/2π.

(b) µ0I1I2/4π.

(c) zero.

(d) depends on the distance of the centre of the loop from the wire.

26. A uniform electric field ~E in the y-direction and uniform magnetic field ~B in
the x-direction exists in free space. A particle of mass m and carrying charge
q is projected from the origin with speed v0 along the y-axis. The speed of
particle as a function of its y coordinate will be

(a)

√
v2

0 +
2qEy

m

(b)

√
v2

0 −
4qEy

m

(c)

√
v2

0 +
qEy

m

(d) v0.

27. The atmospheric pressure on the earth’s surface is P in MKS units. A table
of area 2 m2 is tilted at 450 to the horizontal. The force on the table due to
the atmosphere is (in newtons)

(a) 2P

(b)
√

2P

(c) 2
√

2P

(d) P/
√

2

28. The shear modulus of lead is 2 × 109 Pa. A cubic lead slab of side 50 cm is
subjected to a shearing force of magnitude 9.0× 104 N on its narrow face (see
Fig. (31)).
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Figure 31: Problem 28

The displacement of the upper edge is δl, where δl is

(a) 2× 10−3 m

(b) 5× 10−4 m

(c) 4× 10−4 m

(d) 9× 10−5 m

29. In a moving coil galvanometer the number of turns N = 24, area of the coil
A = 2 × 10−3 m2, and the magnetic field strength B = 0.2 T. To increase its
current sensitivity by 25% we

(a) Increase B to 0.30 T

(b) Decrease A to 1.5× 10−3 m2

(c) Increase N to 30

(d) None of the above.

30. Which of the following statement is TRUE ?

(a) Sound waves cannot interfere.

(b) Only light waves may interfere.

(c) The de Broglie waves associated with moving particles can interfere.

(d) The Bragg formula for crystal structure is an example of the corpuscular
nature of electromagnetic radiation.

31. Two metallic rods AB and BC of different materials are joined together at
the junction B (see Fig. (32)). It is observed that if the ends A and C are
kept at 1000 C and 00 C respectively, the temperature of the junction B is
600 C. There is no loss of heat to the surroundings. The rod BC is replaced
by another rod BC ′ of the same material and length (BC = BC ′). If the
area of cross-section of BC ′ is twice that of BC and the ends A and C ′ are
maintained at 1000 C and 00 C respectively, the temperature of the junction B
will be nearly
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C
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Figure 32: Problem 31

(a) 290 C

(b) 330 C

(c) 600 C

(d) 430 C

32. Three closed vessels A,B and C are at the same temperature (T ) and contain
gases which obey the Maxwellian distribution of velocities. The vessel A con-
tains only O2, B only N2 and C a mixture of equal quantities of O2 and N2.
If the average speed of the N2 molecules in vessel B is V2 and that of oxygen
molecules in A is V1, the average speed of N2 molecules in C is

(a) (V1 + V2)/2

(b) (V1 − V2)/2

(c) V2

(d)
√

(V1 V2)

33. When a system is taken from state a to state b along the path a − c − b (see
Fig. (33)), 60 J of heat flows into the system and 30 J of work are done by
the system. Along the path a− d− b, if the work done by the system is 10 J,
heat flow into the system is

V

a d

bc

P

Figure 33: Problem 33

(a) 100 J

(b) 20 J

(c) 80 J

(d) 40 J
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34. Two identical piano strings, when stretched with the same tension T0, have
a fundamental frequency of 300 Hz. The tension in one of the strings is in-
creased to (T0 + ∆T ) and 3 beats per second occur when both strings vibrate
simultaneously. (∆T/T0)× 100 is

(a) 2

(b) 3

(c) 1

(d) 4

35. The half life of a certain radioactive material (zX
100) is 6.93×106 s. In order to

have an activity of 6.0×108 disintegrations per second, the amount of material
needed is nearly

(a) 10−9 kg

(b) 10−16 kg

(c) 10−6 kg

(d) 10−4 kg

36. Sound of frequency 1000 Hz from a stationary source is reflected from an object
approaching the source at 30 m·s−1, back to a stationary observer located at
the source. The speed of sound in air is 330 m·s−1. The frequency of the sound
heard by the observer is

(a) 1200 Hz

(b) 1000 Hz

(c) 1090 Hz

(d) 1100 Hz

37. Current (I) - applied voltage (V ) characteristics are shown in Fig. (34). Pos-
sible observed plot(s) for a photoelectric setup is (are):

I

II

III

(0,0) V

I

IV

Figure 34: Problem 37

(a) only II.

(b) I and II.

(c) II and III.

(d) II and IV.
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38. A triply ionized beryllium (Be+++) has the some orbital radius as the ground
state of hydrogen. Then the quantum state n of Be+++ is

(a) n = 1

(b) n = 2

(c) n = 3

(d) n = 4

39. One mole of gas undergoes a linear process as shown in Fig. (35).

V

P

(0,0)

P

V0

0

Figure 35: Problem 39

(a) Express P in terms of {V, V0, P0}.
(b) Assuming that the gas is ideal, obtain the expression for T in terms of

gas constant R and {V, V0, P0}.
(c) Obtain the expression for volume change with temperature (dV/dT ) in

terms of {R, V, V0, P0}.
(d) Let Tmax be the maximum temperature in the process. Express Tmax in

terms of {V0, P0, R}.
(e) Sketch the T − V diagram. (T on y-axis and V on x-axis.)

(f) Let Cp/Cv = γ, where Cp (Cv) is specific heat at constant pressure (vol-
ume). Express heat capacity Cv in terms of R and γ.

(g) Using the first law of thermodynamics, obtain the expression for specific
heat C for the above linear process in terms of {R, γ, V0, V }.

(h) Suppose mixture consists of half mole of mono atomic and half mole of
diatomic gas. Obtain γ for this mixture.

(i) For the mixture described in Part (39h), obtain C in terms of {R, V, V0}.
(j) Plot C/R (on y-axis) vs V/V0 (x-axis).

[13]
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400 years of telescope: Dutch eyeglass-maker Hans Lippershey first tried to
patent the telescope in October 1608, and his invention was soon a big hit in Eu-
rope as a tool for insider trading. Futures contracts were in vogue, and spying a
cargo ship first had financial benefits. The telescope also redefined our universe:
In 1608, Earth was the centre of God’s perfect Creation. By 1610, Galileo showed
that Jupiter had moons, Earth’s moon had mountains, and the Catholic church was
fallible. Four centuries on, we know we are a mere speck in a universe of wonders.

Eyepiece Incoming light

Pupil of the eye

−brings the bright image from

the focus and magnifies it to the 

size of your eye’s pupil

bent into a bright
point

−gathers light and bends 

it into focus

Objective lens−incoming light is 
Focus

Galileo Galilei (15 Feb.1564-8 Jan.1642) : Italian natural philosopher, astronomer,
and mathematician who applied the new techniques of the scientific method to make
significant discoveries in physics and astronomy. His great accomplishments include
perfecting (though not inventing) the telescope and consequent contributions to as-
tronomy. He studied the science of motion, inertia, the law of falling bodies, and
parabolic trajectories. His formulation of the scientific method parallels the writ-
ings of Francis Bacon. His progress came at a price, since his ideas were in conflict
with religious dogma. He believed the Earth revolved around the Sun. For this, he
was interrogated by the Inquisition, was put on trial, found guilty and sentenced
to indefinite imprisonment. For renouncing his former beliefs before the Cardinals
that judged him, he was allowed to serve this time instead under house-arrest.
“In questions of science the authority of a thousand is not worth the
humble reasoning of a single individual.”
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1. (a) a=0

(b) fs = 5 N. and T ∼= 10 N.

2. (a) a =
µg

3

(b) t∗ =
3

7
.
R ω0

µ g

(c) ttot =
Rω0

µ g

3. (a) η = 1− Tc − Td
Tb − Ta

(b) η = 1−
(
P2

P1

)γ−1
γ

(c)

T

a

c

b

d

V

 .

Figure 1: V-T diagram

(d) ηc = 1− Td
Tb

,

Carnot cycle has higher efficiency than the given cycle.
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4. Amplitude of the image= 2.78 cm
The phase difference = 0
Angle made by the virtual image with the principle axis = 30.260

5. (a) µ′ =
πωσR4

4
and along the positive x-direction.

(b) B =
µ0 ω σ

2

[
R2 + 2 a2

√
R2 + a2

− 2 a

]
and along the positive x-direction.

(c) B =
µ0 ω σR

4

8a3
and along the positive x-direction.

(d) F = −3µµ0 ω σ R
4

8 a4
and direction dictated by the direction of ~µ.

6. (a) F = 4πnp

[
δ2

2
− δ4

4R2

]
and direction upwards.

(b) m = 6.80× 10−7 kg.

7. (a) λ = 2080 Å. This wavelength belongs to ultraviolet region of the electro-
magnetic spectrum.

(b) Maximum Kinetic Energy Kmax = 2.75 eV
De Broglie wavelength λdB = 7.4 Å

8. (a) y > 10−18

(b) F =
ηe2y2r

3ε0mp

(c) H = 1.8× 10−17 s−1

(d) V = V0 e
3Ht

(e) The numerical value ofH does not agree with the known value of Hubble’s
constant. This is one of the reasons we may discard the Lyttleton Bondi
model.
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2 INPhO-2007

1. (a) ~p = m(ar̂ + rωθ̂)
~F = m(−rω2r̂ + 2aωθ̂)

(b) ∆W =
mω2r2

2

(c) Trajectory will be a spiral.

2. (a) θm =
cot−1(2µ)

2

(b) Possible range of θm : θm ∈ ]0, π/4[

3. (a) t ≈ 222 s

(b) t = 166 s

(c) Process (3a) takes more time since as the disk heats up, its specific heat
also increases and more heat is required to effect a further rise in tem-
perature.

4. (a) d2 = R2

(
1− (n2 − 2)2

4

)
(b) The allowed range of n is n ∈ ]

√
2, 2[

5. (a) E(r) =
λ

2πε0r

(b) V (r) = − λ

2πε0
ln
(r
a

)
(c)

(
x− dk

2 + 1

k2 − 1

)2

+ y2 =
4d2k2

(k2 − 1)2
This is an equation of a circle with

centre at

(
d
k2 + 1

k2 − 1
, 0

)
and radius given by

2dk

|k2 − 1|
. The constant k is

related to the “equipotential” V0.

(d) See Fig. (2) and part (c)

−λ

2d

+λ

P

x

−r
r+

y

Figure 2: Problem 5 (d)

(e) v = 1/
√
ε0µ0 = c

6. (a) F =
µ0I1I2√

3π

[√
3S

2a
− ln

(
1 +

√
3S

2a

)]
and direction downwards.

©HBCSE-TIFR 43



H
B
C
SE

2 INPhO-2007 Brief Solutions

F

S/a

Figure 3: Problem 6 (b)

(b) See Fig. (3).

7. (a) |~F | = 2.82× 10−7 N

(b) σ = 7.27× 102 C·m−2

(c) Energy density after 10 s= 2.93× 1016 J·m−3

(d) The range of kinetic energy of electrons is from 0 to 0.16 eV.

8. (a) Γ = − (γ − 1)

γ

mag

R

(b) Γ = −0.01 K·m−1 (i.e. 10 C decrease for every 100 m)

(c) p = p0

(
T0 − Γ z

T0

)mag/RΓ

(d) Substituting the given values in the above equation, the height of the
atmosphere is approximately 30 km.

9. (a) B =
µ0

2

Nf

Rf

I(t) and direction given by right hand thumb rule.

(b) |ε| = µ0

2

NpNf

Rf

πRp
2dI(t)

dt

(c) NpNf = 645

(d) M =
µ0

2

NpNf

Rf

πRp
2 = 1.59× 10−5 H

(e) Nf = 18 turns, Np = 36 turns

(f) Induced emf in case of

i. Iron : will increase.

ii. Wood : no appreciable change.

iii. Copper: decrease.
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3 INPhO-2008

1. rn =
n2

2π

B

C
; En = − 1

2n2
AC2 ; R =

C2

2B

2. (a) x =
u

c
(1− e−ct) ; y = H +

g

c2
− g

c

[
1

c
e−ct + t

]
(b) y = H − g x2

2u2
− g x3 c

3u3

(c) See Fig. (4)

x

c=

c=

y

0

0

Figure 4: Problem 2 (c)

(d) t = 11.1 s

3. (a) Free Body Diagram, (Fig. (5))

W

Downward tension due to lower part =

= WeightW

u

F
d

d

u
= Upward tension due to upper part   F

F

F

Figure 5: Problem 3 (a)

(b)
dT

dr
= GMρ

[
1

r2
− r

R3
g

]

(c) H =
R

2

[√
1 +

8R3
g

R3
− 1

]
= 1.51× 105 km
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(d) See Fig. (6)

T(r)

Rg rHR

Figure 6: Problem 3 (d)

(e) Maximum stress will be at r = Rg

T (Rg) = 379 GPa

Steel has tensile strength 6.37 GPa which is less than 379 GPa. Hence it
will not be feasible.

4. (a) For wall 1, qw =
kw
w

(T2 − T ′′)

For wall 2, qw =
kw
w

(T ′ − T1)

(b) qw =
kw
w

(∆− δ)
2

(c) qr =
ε σ

(2− ε)
(T ′′4 − T ′4)

(d) qr =
kw
w

(
∆ 4c T 3

0

1 + 8c T 3
0

)
(e) qr = 107.22 W·m−2

(f) qcv =
Nu ka ∆ kw

kw d+ 2w kaNu

(g) qcv ' 46.5 W·m−2

(h) qcd =
ks kw ∆

2wks + kw d

(i) qcd = 13.8 W·m−2

(j) Sheathing

5. (a) Position of the image with violet centre fV = 14.3 cm ;
Position of the image with red centre fR = 16.7 cm ;
Size of the image with violet centre IV ' 0.64 mm ;
Size of the image with red centre IR ' 0.74 mm

6. (a) 〈Fe〉 =
C2

1 V
2

0

4 πε0 a2

(b) 〈Fm〉 =
µ0 b

2h
C2

2V
2

0 (2πf)2
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(c) c = (2π)3/2 a

(
b

h

)1/2
C2

C1

f

(d) c = 2.99× 108 m · s−1

7. (a) i R + L
di

dt
= −Nπa2B0 ω cosωt

(b) i =
N π a2B0 ω(R cosωt+ ωL sinωt)

R2 + ω2 L2

(c)
dF

dl
= −NB

2
0 πa

2ω

R2 + ω2L2
(R sinωt cosωt+ ω L sin2 ωt)

dF

dl

∣∣∣∣
av

= −NB
2
0 πa

2ω2L

2(R2 + ω2L2)
dF

dl

∣∣∣∣
osc

= − NB2
0 πa

2ω

2(R2 + ω2L2)
(R sin 2ωt− ωL cos 2ωt)

(d)
dF

dl

∣∣∣∣
av

= 1.55 N·m−1

(e) i. The frequency of the sound is 120 Hz.

ii. The compressional force is lessened and may even become tensile.
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4 INPhO-2009

(1) c (6) a (11) c (16) a (21) c (26) a (31) d (36) a
(2) b (7) b (12) d (17) a (22) a (27) a (32) c (37) d
(3) d (8) d (13) b (18) a (23) c (28) d (33) d (38) b
(4) b (9) b (14) c (19) d (24) c (29) c (34) a
(5) c (10) c (15) b (20) d (25) c (30) c (35) a

(39) (a)
P

P0

+
V

V0

= 1 ( valid for V < V0, P < P0)

(b) T =
P0V

R

(
1− V

V0

)
(c)

dV

dT
=

RV0

P0(V0 − 2V )

(d) Tmax =
P0V0

4R
(e)

V
0

0
0

maxT

T

V

V / 2

Figure 7: Problem 39 (e)

(f) Cv =
R

γ − 1

(g) C =
R

γ − 1
+

(V0 − V )R

(V0 − 2V )

(h) γ =
3

2

(i) C = R

(
3− 5V

V0

)
(

1− 2V

V0

)
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(j)

3

4

5

0.2 0.4 0.6 0.8 1

2

1

0 V/V

/R

0

C

Figure 8: Problem 39 (j)
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Detailed Solutions

1 INPhO-2006

1.

N

f

T

cosθ

θ

m  g

sin

m  g 

1 

1

m  g 
1 θ

(a)

T

m   g

m
2

2

(b)

Figure 1: Free body diagrams assuming m1 is going down: (a) For m1. (b) For m2.

(a) Let m1 go down. Then from free body diagram for m1,

m1 g sin θ − f − T = m1 a (1)

where the frictional force f = µN, N being the normal reaction. Hence,

m1 g sin θ − µN − T = m1 a

N = m1g cos θ

Therefore a = g sin θ − µg cos θ − T

m1

(2)

From free body diagram for m2,

T −m2g = m2a (3)

Solving Eqs. (2) and (3),

a =
g [m1(sin θ − µ cos θ)−m2 ]

m2 +m1
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As m1 = m2,

a =
g [ sin θ − 1− µ cos θ ]

2

We can see from the above equation that a can have only negative values.
Substituting the values

a = −5.1 m·s−2 < 0

T
N

1 

f

    

θ

m  g 
1

θsin

m  g

m  g cos
1 θ

(a)

T

m

2
m   g

2

(b)

Figure 2: Free body diagrams assuming m2 is going down: (a) For m1. (b) For m2.

Let m2 go down. Then for m2

m2g − T = m2a (4)

For m1

T −m1g sin θ − f = m1 a (5)

Elementary algebraic manipulations yield

a =
g [ 1− sin θ − µ cos θ ]

2

Substituting the values

a = −0.1 m·s−2 < 0

As seen from both the cases, the acceleration is negative, either assum-
ing m1 going down or m2 going down. So we can conclude that the
acceleration of the system is zero and system would be stationary.

(b) substituting a = 0 in Eq. (4),

T ∼= 10 N.

Since system is stationary, so frictional force would be static friction and
a may have a positive value only if m2 is going down and not up. By
substituting the value of T and a in Eq. (5), we obtain

fs = 5.2 N.

This fs is down the inclined plane. Why?
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2.

������
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������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

N

f f
1

i i 

2

FF.

1 2

ω

N

R

0

Figure 3: Free body diagram of the block disk system

Key points to remember are, when disk touches the block, block-disk system
starts to slide. After some time t∗, disk starts to roll without slipping and
after this time t∗, disk continues to roll without slipping and comes to a halt
in total time ttot.

(a) If a is the acceleration of the block-disk system, then by free body dia-
gram(see Fig. (3)).

(2M +M)a = f1 − f2

3Ma = µ(2M)g − µMg

a =
µg

3
(6)

(b) As disk rolls, it’s angular velocity ω decreases. If α is the angular accel-
eration of the system, then

I α = −f1R
1

2
(2M)R2α = −µ (2M)g R

α =
−2µg

R
(7)

At time t∗, disk starts to roll without slipping. So

v(t∗) = Rω(t∗) (8)

and equation of motion for rotational motion

ω(t∗) = ω0 −
2µ g

R
t∗ (9)

and equation of motion for translational motion

v(t∗) = 0 +
µ g

3
t∗ (10)

By Eqs. (9) and (10)

t∗ =
3

7
.
R ω0

µ g
(11)
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(c) After time t > t∗, velocity of block - disk system starts to decrease. In this
condition of pure rolling, frictional force on disk f ′1 < µ (2M) g. Suppose
angular acceleration is α′ and linear acceleration is a′, then

α′ =
a′

R

I α′ = −f ′1R
1

2
(2M)R2α′ = −f ′1R

Hence
−f ′1 = M a′ (12)

Now
(2M +M)a′ = f ′1 − f ′2

3M a′ = −Ma′ − µMg ⇒ a′ =
−µg

4
(13)

Suppose in time t from t∗ the system comes to rest. Then

v(t) = v(t∗) + a′t

Using Eqs. (10) and (13)

0 =
µ g

3
.
3Rω0

7µg
− µg

4
t

=
Rω0

7
− µ g t

4

t =
Rω0

µ g

4

7

Thus total time
ttot = t+ t∗

ttot =
Rω0

µ g

This is a surprisingly simple answer.

gµM   2

1

tot

µg

4

M     

tt*
t

f

Figure 4: Plot of force of friction with time
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Figure (4) gives the interesting plot of force of friction (f1) with time.

One can make an equivalent plot with angular velocity ω on the x-axis.
There is a sudden drop in f, at t = t∗ = 3rω0/7µg. This drop occurs
when pure rolling sets in. It may remind the reader of a first order phase
transition where f1 plays the role of the internal energy and ω that of
temperature.

3. (a) Efficiency of cycle is

η = 1− Qout

Qin

In the cycle, energy is absorbed in isobaric process from a to b.
So Qin = Cp (Tb−Ta). Here Cp is the heat capacity at constant pressure.
Energy is released in isobaric process c to d.
So Qout = Cp (Tc − Td). Hence

η = 1− Tc − Td
Tb − Ta

(14)

Another method exists for this solution. In this method

η =
W

Qin

and W is evaluated by integrating the area under the P − V curve.

1

2

P

V

a b

c

adiabats

P

d
P

Figure 5: P-V diagram

(b) For adiabats b to c and d to a

PV γ = const. (15)

Equation of state gives

PV = nRT ⇒ PV

T
= const.

Inserting this in Eq. (15)

T = const.× P
γ−1
γ (16)

Equation (16) gives

Tc
Td

=
Tb
Ta

(17)
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and

Td
Ta

=

(
P2

P1

)γ−1
γ

Equation (14) becomes

η = 1−
(
P2

P1

)γ−1
γ

(c) For isobaric process, V − T curve will be a straight line passing through
the origin of the V − T plot. Since P1 > P2 so for a− b, this line will be
less steeper then c − d. By Eq. (15) and equation of state, we can get
Tb > Tc > Ta > Td. For convexity of curve from a− d and b− c, we can
analyze relation between V and T , that slope is inversely proportional to
T . So on this basis we can draw V − T diagram as shown in Fig. (6).

T

a

c

b

d

V

 .

Figure 6: V-T diagram

(d) Carnot efficiency is defined by the highest temperature Tb and lowest
temperature Td :

ηc = 1− Td
Tb

Efficiency of concerned cycle (from Eqs. (14) and (17)) is

η = 1− Td
Ta

Hence

ηc
η

=
1− Td

Tb

1− Td
Ta

Since Tb > Ta, hence ηc > η i.e. Carnot engine has higher efficiency than
the concerned cycle.
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4.

v = 

u = 10 cm

17.14 cm

30.26 45
o o

3
µ

1 µ

µ
2

Figure 7: Problem 4

Given µ1 = 1.0, µ2 = 1.5, µ3 = 1.2, u = −10 cm, R = −10 cm.

General formula for thin lens,

µ3

v
− µ1

u
=
µ2 − µ1

R1

− µ2 − µ3

R2

Now R1 −→∞, R2 = R.

Therefore
µ3

v
− µ1

u
=

µ3 − µ2

R
(18)

Implies v =
Ruµ3

u(µ3 − µ2) + µ1R
(19)

= −17.14 cm

Here the negative sign indicates that image is on the left side. Under small
shift along the principal axis of the lens for the object, the image will also shift
slightly along the same axis. So, for longitudinal magnification differentiate
Eq. (19) with respect to v and get

dv

du
=

(v
u

)2 µ1

µ3

= 2.4

During the first refraction, ray travels from medium 1 (µ1) to medium 2 (µ2).
Linear lateral magnification in first refraction

y′2
y1

=
µ1

µ2

v′

u
(20)

For the second refraction
y2

y′2
=
µ2

µ3

v

v′
(21)

Eq. (20) and Eq. (21) gives

y2

y1

=
µ1

µ3

v

u
= 1.43
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It is given that object’s amplitude is
√

2 cm. Taking the projection of object
along the principle axis and perpendicular to the axis,

du = 1 cm (along the axis)

and y1 = 1 cm (normal to the axis)

=⇒ dv = 2.4 cm

and y2 = 1.4 cm.

Amplitude of the image =

√
(dv)2 + y2

2

= 2.78 cm

Since lateral and longitudinal magnifications are positive, the phase difference
between oscillating image and object will be zero. Only orientation of the axis
along which oscillation takes place will be different.
Angle made by the virtual image with the principle axis

= tan−1
( y2

dv

)
= tan−1

(
1.4

2.4

)
= 30.260

5.

ω

+drr

R
r

x

P  a(  ,0,0)

Figure 8: Problem 5

(a) Dipole moment due to a circular ring (r, r + dr) (See Fig. (8))

dµ′ = diA

And di =
dQ

T
=

2π r dr σ

2 π/ω
(22)

dµ′ =
2πr dr ω σ

2π
. πr2

Then for circular disk

µ′ = πωσ

∫ R

0

r3 dr

µ′ =
πωσR4

4

Direction is in the positive x-direction.
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(b) Magnetic field due to a circular ring (r, r + dr)

dB =
µ0

2
.

di r2

(r2 + a2)3/2

B =
µ0

2

∫ R

0

di r2

(r2 + a2)3/2

Using Eq. (22)

B =
µ0 ω σ

2

∫ R

0

r3

(r2 + a2)3/2
dr

Substitutions

r = a tan θ

dr = a sec2 θ dθ

and limit 0 to tan−1 (R
a

)

B =
µ0 ω σ a

2

∫ tan−1(R
a

)

0

tan2 θ sin θ dθ

=
µ0 ω σ a

2

∫ tan−1(R
a

)

0

(sec2 θ − 1) sin θ dθ

=
µ0 ω σ a

2

∫ tan−1(R
a

)

0

(sec2 θ sin θ − sin θ) dθ

Integrating the first term by parts

B =
µ0 ω σ a

2
[ sin θ tan θ + 2 cos θ ]

tan−1(R
a

)

0

Applying the limits

B =
µ0 ω σ

2

[
R2 + 2 a2

√
R2 + a2

− 2 a

]
(23)

Direction is in the positive x-direction.

(c) Method - I
When a >> R then for axial field due to dipole, we can use the formula

B =
µ0

4π
.
2µ′

a3

=
µ0

4π
.

2

a3
.
π σ ωR4

4

=
µ0 σ ωR

4

8a3

Direction is in the positive x-direction.
Method - II
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From Eq. (23)

B =
µ0 ω σ

2

[
R2 + 2 a2

√
R2 + a2

− 2 a

]
=

µ0 ω σ

2

[
R2 + 2 a2

a

(
1 +

R2

a2

)− 1
2

− 2a

]

=
µ0 ω σ

2

[(
R2

a
+ 2a

)(
1− R2

2a2
+

3

8

R4

a4

)
− 2a

]
=

µ0 ω σR
4

8a3
(24)

Direction is in the positive x-direction.

(d) The force on dipole of dipole moment µ placed at a

F = µ
dB

dx

After differentiating Eq. (24) with respect to a,

F = −3µµ0 ω σ R
4

8 a4

Direction is dictated by ~µ.

6.

θ

r

y

xdr

R

O

δ

θ θ

θ

Figure 9: Problem 6

(a) Initial momentum of photon in the beam ~pi = p̂.
Final momentum of photon in the beam ~pf = p sin 2θ ı̂− p cos 2θ ̂.
x component of momentum cancels by symmetry.
Net change in momentum ∆~p = −2p cos2 θ.
The number of photons in the annular region r to r + ∆r per second
= n 2 π r dr.
Magnitude of force on the annular region is ∆F = n2π r dr × 2 p cos2 θ.
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Total force on the sphere is (magnitude)

F =

∫ δ

0

4nπ p r cos2 θ dr

sin θ =
r

R
cos2 θ = 1− r2

R2

F = 4πnp

[
δ2

2
− δ4

4R2

]
(25)

Direction is upward so ~F = F ̂.

(b) Method - I
Since δ << R, drop δ4/R2 term in previous part.

F ≈ 4πnp
δ2

2
(26)

If E (or hν) is the energy of one photon and P the power of the beam (1
kW), then

P

E
= nπδ2 (27)

Also E = pc (28)

Using Eqs. (27) and (28) in Eq. (26)

F = 2
P

c

For levitation

F = mg

m =
2P

gc
= 6.80× 10−7 kg.

Method - II

A

δ2

C
B

Figure 10: Problem 6 (b) method II

Alternatively one can obtain this without part(a).
Area = π δ2.
Since δ << R, we can assume that A-B-C is flat.
Change in momentum per photon = 2p.
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No. of photons per unit area per sec. = n
Therefore

F = (nπ δ2) 2 p

= 2 π n p δ2

This is the same as Eq. (26) and we proceed as in the previous part.

Although the answer to the question ends here, we draw your at-
tention to the following. Let us estimate the size of this ‘Al’ sphere.

m =
4π

3
r3ρ

r3 =
3m

4πρ

=
6.8× 10−7

4× 2.7× 103
× 3

3.14

=
6.8× 3

4× 2.7× 3.14
× 10−10

r = 10−3 ×
(

6.8× 0.3

4× 2.7× 3.14

)1/3

= 4× 10−4 m = 0.4 mm.

Note that focussing a laser beam to a spot size r/10 = 4 × 10−5 m is easy.
In this connection, recall that the “minimum” spot size is dictated by the
wavelength of the beam. Laser levitations of polystyrene beads have been
demonstrated. Optical tweezers is also a possibility. Thus it is possible to
realise the experiment.

7. (a) Using formula

En2 − En1 = 13.6Z2

(
1

n1
2
− 1

n2
2

)
eV

For Li++, Z=3, and transition from n2 = 4 to n1 = 3.

E4 − E3 = 4E = hν = h
c

λ
= 13.6× 9

(
1

32
− 1

42

)
eV

Putting the values of h and c,

λ = 2089 Å

This wavelength belongs to the ultraviolet region of the electromagnetic
spectrum.

(b)
hν = φ+ (K.E.)max

Here φ is the work function of metal. Putting all the values,

(K.E.)max = 2.75 eV
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Now de Broglie wavelength

λdB =
h√

2me (K.E.)max
λdB = 7.4 Å

8. (a) Equating Energies, (or Pressures, or Forces) for a spherical “charged”
cloud

3

5

Q2

4π ε0R
=

3

5

GM2

R

Q = Nq = N(−ey)

M = Nmp

y2 =
mp

2

e2
G 4π ε0

y = 0.9× 10−18 ' 10−18

Hence

y > 10−18

(b) The force on the atom at a distance r from the centre is

F =
1

4 π ε0

Qq

r2

m
dv

dt
= m

dv

dr
.
dr

dt
= mv

dv

dr
(chain rule)

Q =
η

mp

4π r3

3
q

q = −e y

v2 ∝ r2 or v ∝ r

with constant of proportionality

H =

[
η

3 ε0mp
2
e2 y2

] 1
2

H =
ey

mp

[
η

3 ε0

] 1
2

(c)

H =
ey

mp

[
η

3 ε0

] 1
2

Putting right values of η, ε0, mp, e and y = 10−17 (one order of magnitude
larger)

H = 1.8× 10−17s−1
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(d) Method - I

dr

dt
= H r

r = r0 e
Ht

V = V0 e
3Ht

Method - II

dV

dt
= 3.

4π r2

3

dr

dt

= 3
4π r3

3
H

dV

V
= 3H dt

V = V0 e
3Ht

(e) Constant H obtained in part (c) is physically similar to Hubble’s constant.
Observed value of Hubble’s constant is = 2.3× 10−18s−1, while obtained
H is = 1.8× 10−17s−1. Further, experiments do not indicate a difference
in the magnitudes of the electron and proton charge. Some theories
regarding the nature of the fundamental forces and elementary particles
also do not point to a difference.

“This is not right. It is so bad, it is not even
wrong!”
-Wolfgang Ernst Pauli (25 Apr.1900-15 Dec.1958)
on the solution to a problem provided by a col-
league.
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2 INPhO-2007

1. (a)

Given r = at, θ = ωt (29)

Now ~v = ṙr̂ + rθ̇θ̂

Hence ~p = m(ar̂ + rωθ̂)

~F = m~a

= m[(r̈ − rθ̇2)r̂ + (rθ̈ + 2ṙθ̇)θ̂]

= m(−rω2r̂ + 2aωθ̂)

(b) ∫
Frdr = −mω2

∫ r

0

rdr =
−mω2r2

2
(30)

From Eq. (29)

θ =
rω

a∫
Fθ r dθ = 2mω2 r

2

2
= mω2r2 (31)

Adding Eqs. (30) and (31)

∆W =
mω2r2

2

We can also obtain the above result by employing the work-energy theo-
rem.

(c) Trajectory will be a spiral.

2. (a) From Fig. (11)

vy = v sin θ (32)

Note that the surface is rough and there is frictional force along the x-
direction. Hence elastic collision does not constrain the velocity along the
x-direction. It implies that the y-component of the velocity v sin θ changes
only in sign. From Newton’s second law along vertical y-direction, change
in momentum is given by the linear impulse, which yields:

2mv sin θ =

∫
N dt (33)

From Newton’s second law along x-direction, we have

mv cos θ − µ
∫
N dt = mvx (34)

Inserting Eq. (33) in Eq. (34) we obtain

vx = v(cos(θ)− 2µ sin(θ))
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y

x

V mvy

mvx

mv 

mv sinθ

cos

θ

θ

(a)

N

f =  µ N

mg

(b)

Figure 11: (a) Problem 2. (b) Free body diagram of the ball in contact with the
floor.

Range = vx × time of flight = vx ×
2vy
g

R(θ) =
2v2

g
f(θ)

where

f(θ) = sin θ(cos θ − 2µ sin θ)

To maximize R, set

f ′(θm) = 0

which yields

θm =
1

2
cot−1(2µ)

(b) Possible range of θm:

θm ∈ ]0, π/4[

3. See Fig. (12).

©HBCSE-TIFR 66



H
B
C
SE

Detailed Solutions 2 INPhO-2007

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

 0.04 m 2A  =  

280 Ki
θ   = 

m =  0.4 kg

0  600  .  .  KC   =  

K340fθ   = 

−1 −1
 

  

J kg  

A

Cylinder

Disc

m
Kθ    = 400

L =  0.4 m

Figure 12: Problem 3

(a) By Fourier’s law of heat conduction

dQ

dt
=
KA(θm − θ)

L
(35)

By calorimetry

dQ

dt
= mC(θ)

dθ

dt
(36)

By Eqs. (35) and (36)

1− α(θi − θm)

θm − θ
dθ − α dθ =

KA

mC0 L
dt

Integrating and noting that mLC0/KA = 240 s

(1− α(θi − θm)) ln

(
θm − θi
θm − θf

)
− α(θf − θi) =

t

240
(37)

Inserting the values t ≈ 222 s.

(b) If α = 0, then from Eq. (37)

t

240
= ln

(
θm − θi
θm − θf

)
t = 166 s

(c) Process (3a) takes more time since as the disk heats up, its specific heat
also increases and more heat is required to effect a further rise in tem-
perature. Note

C(θi) = 600 J·kg−1·K−1

C(θf ) = 960 J·kg−1·K−1

4.
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d
ia
m
et
er

ray

A

O

i

B

(i − r)

i

d

r

Figure 13: Problem 4

(a) From sine rule for 4OAB (see Fig. (13))

OA

sin (i− r)
=
OB

sin r

OA = OB = R

∴ sin r = sin(i− r)
= sin i cos r − cos i sin r

Using Snell’s law for refraction

sin i = n sin r

Hence
1

n
=

√
n2 − sin2 i

n
−

√
1− sin2 i

n

From Fig. (13), sin i = d/R.
Solving above equations

d2 = R2

(
1− (n2 − 2)2

4

)
(b) d ranges from 0 to R.

If d→ 0.
n = + 2 or 0

Only physically allowed value is n = +2.
If d→ R.

n = +
√

2

Only allowed value is +
√

2.
Hence the allowed range of n is

n ∈ ]
√

2, 2[

5. (a) Using Gauss law, the electric field is

E(r) =
λ

2πε0r
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(b) Integrating along a radial line, we get the electric potential

V (r) = − λ

2πε0
ln
(r
a

)
where a is the distance of reference point from the line charge.

(c) Total potential at point P ≡ (x, y) is (see Fig. (14))

V (P ) = − λ

2πε0
ln

(
r+

r−

)
Equipotential lines in z = 0 plane are given by the equation V (P ) = V0,
some constant. Let k = exp(2πε0V0/λ). Then equation for equipotential
lines becomes

r−
r+

= k

(x+ d)2 + y2

(x− d)2 + y2
= k2

(
x− dk

2 + 1

k2 − 1

)2

+ y2 =
4d2k2

(k2 − 1)2

This is an equation of a circle with centre at

(
d
k2 + 1

k2 − 1
, 0

)
and radius

given by
2dk

|k2 − 1|
.

(d) See Fig. (14)

−λ

2d

+λ

P

x

−r
r+

y

Figure 14: Problem 5 (d)

(e) Magnitude of electric force per unit length is given by

FE =
λ2

4πε0d

Magnitude of magnetic force per unit length is given by

FM =
µ0λ

2v2

4πd

If these are equal then v = 1/
√
ε0µ0 = c. This emphasizes the general ob-

servation that magnetic force is very small compared to the electrostatic
force.
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6.

y

(0,0) x
O A

B

I1

I2

dF

(   , −a )0

Figure 15: Problem 6 (a)

(a) See Fig. (15). Force F1 on side OA is

F1 =
µ0I2I1S

2πa

downwards, i.e. the negative y - direction.
Consider element dr at a distance r from O on OB. On both of the sides
(OB and AB) same magnitude of force acts. The x components cancel
and the y components add. Hence total force on both sides

F2y =
µ0I1I2

2π

∫ S

0

1

a+
√

3 r/2
dr

upwards, i.e. the positive y - direction.
By adding these forces, total force on the triangle is

F =
µ0I1I2√

3π

[√
3S

2a
− ln

(
1 +

√
3S

2a

)]

This net force will be downwards.

(b) See Fig. (16). The behaviour is quadratic for small S/a and almost linear
for large S/a.

F

S/a

Figure 16: Problem 6 (b)
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7. (a) Let n be the number of photons per second and P , the power of the
source.

Change in momentum of one photon

=
h

λ
(̂− ı̂)

Rate of change of linear momentum of the beam is

~F =
nh

λ
(̂− ı̂)

=
P

c
(̂− ı̂)

(
∵ P =

nhc

λ

)
Inserting values

|~F | = 2.82× 10−7 N

(b) Surface charge density σ of metal surface after time t with photoelectric
efficiency η.

=
n

A
e t η

=
Pλ

hcA
e t η

Now t = 10 s and η = 0.1. Hence

σ = 7.27× 102 C·m−2

(c) Energy density after 10 s

=
1

2
ε0

(
σ

ε0

)2

= 2.93× 1016 J·m−3

(d) Energy of one photon

E =
hc

λ
= 2.06 eV

Given that work function
φ = 1.9 eV

Then
Kmax = E - φ = 0.16 eV

Hence the range of kinetic energy is from 0 to 0.16 eV.

8.

∆ z

Figure 17: Problem 8
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(a) From Fig. (17)
∆p = −ρg∆z

Let ma be the mass of one mole of air. Then by ideal gas law

p =
ρRT

ma

Also, the equation for adiabatic process is pγ−1 ∝ T γ

From these equations,

∆T = − (γ − 1)

γ

mag

R
∆z

The lapse rate equation is

Γ = − (γ − 1)

γ

mag

R

(b) For diatomic gas γ = 7/5 and ma = 2.9× 10−2 kg·mol−1.
Hence Γ = −0.01 K·m−1 (i.e. 10 C decrease for every 100 m).

(c) Using equations of part (8a)

dp

p
= −mag

R

dz

(T0 − Γ z)

On integrating

p = p0

(
T0 − Γ z

T0

)mag/RΓ

There are two interesting aspects about the exponent of the above equa-
tion. The first is a rare occurance of “Force” related dimension in gases,
namely RΓ. The second is its numerical value mag/RΓ ' 3.
For reasonable heights (e.g. z = 1 km)

p(z) ' p0

[
1− magz

RT0

]
(d) Inserting given values in the above equation, the height of the atmosphere

is approximately 30 km.

9. (a) The magnetic field at the centre of the field coil is

B =
µ0

2

Nf

Rf

I(t)

(b) Flux on the pick-up coil
φ = πRp

2B

Induced emf in Np turns

ε = −Np
dφ

dt

|ε| =
µ0

2

NpNf

Rf

πRp
2dI(t)

dt
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(c) For maximum ε

ε0 =
µ0

2

NpNf

Rf

πRp
2 I0 ω

∴ NpNf = 645 (38)

(d) Mutual inductance on field coil due to pick up coil is equal to mutual
inductance on pick up coil due to field coil. Hence mutual inductance

M =
µ0

2

NpNf

Rf

πRp
2 = 1.59× 10−5 H

(e) The length of wire used is

L = 2πRfNf + 2πRpNp

To optimize it
dL

dNf

= 0

Eq. (38) yields
Nf = 18 turns, Np = 36 turns

(f) Induced emf in case of

i. Iron : will increase.

ii. Wood : no appreciable change.

iii. Copper: decrease.

Max Planck (23 Apr.1858-4 Oct.1947) : Max (Karl Ernst
Ludwig) Planck was a German theoretical physicist. He stud-
ied at Munich and Berlin, where he studied under Helmholtz,
Clausius and Kirchoff and subsequently joined the faculty. He
became professor of theoretical physics (1889-1926). His work
on the law of thermodynamics and the distribution of radi-
ation from a black body led him to abandon classical New-
tonian principles and introduce the quantum theory (1900).
For this he was awarded the Nobel Prize for Physics in 1918.

This assumes that energy is not infinitely divisible, but ultimately exists as discrete
amounts he called quanta (Latin, “how much”). Further, the energy carried by a
quantum depends in direct proportion to the frequency of its source radiation.
The work leading to the “lucky” blackbody radiation formula was described by
Planck in his Nobel Prize acceptance speech (1920): “But even if the radiation
formula proved to be perfectly correct, it would after all have been only
an interpolation formula found by lucky guess-work and thus, would have
left us rather unsatisfied. I therefore strived from the day of its discov-
ery, to give it a real physical interpretation and this led me to consider
the relations between entropy and probability according to Boltzmann’s
ideas. After some weeks of the most intense work of my life, light began
to appear to me and unexpected views revealed themselves in the dis-
tance.” [See also the Foreword]
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3 INPhO-2008

1. Note that
A: has dimensions of energy.
B: has dimensions of length.
C: is dimensionless.
Now the Bohr radius will have a combination of B and C.

rn =
n2

2π

B

C

The energy will have a combination of A and C.

En = − 1

2n2
AC2

The Rydberg constant ( of dimensions length inverse ) will have a combination
of B−1 and C.

R =
C2

2B

Note: This problem can be done in number of ways.

2.

y

H

x

At

v , vyx = u = 0

0t =   ,  x =   ,  y = H0

Figure 18: Problem 2 (a)

(a) See Fig.(18)

dvx
dt

= −cvx

x =
u

c
(1− e−ct) (39)

d vy
dt

= −g − cvy
dy

dt
= −g

c

(
e−ct − 1

)
and y = H +

g

c2
− g

c

[
1

c
e−ct + t

]
(40)
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(b) From Eq. (39)

t = −1

c
ln
(

1− xc

u

)
Substituting in Eq. (40),

y = H +
g

c2
− g

c

1

c
e

ln

(
1−
xc

u

)
− 1

c
ln
(

1− xc

u

)
y = H +

g

c2
− g

c2

(
1− xc

u

)
+
g

c2
ln
(

1− xc

u

)
y = H +

gx

cu
+
g

c2
ln
(

1− xc

u

)
If c is small and the range is limited, e.g.

xc

u
<< 1 then

y = H +
gx

cu
+
g

c2

[
−xc
u
− x2 c2

2u2
− x3 c3

3u3
+ · · · · · ·

]
(41)

y = H − g x2

2u2
− g x3 c

3u3

(c) The trajectory is foreshortened (see Fig. (19)).
Note c = 0 is without air resistance
and c 6= 0 is with air resistance.

x

c=

c=

y

0

0

Figure 19: Problem 2 (c)

(d) When y = 0, from Eq. (40)

H +
g

c2

[
1− e−ct − ct

]
= 0

For H = 500 m, c = 0.05 s−1, g = 10 m·s−2

t = 10 + 1.1 = 11.1 s

The above answer is obtained by iterative analysis. You may verify that
the approximation in Eq. (41) is valid.

3. (a) Free Body Diagram, see Fig. (20)
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W

Downward tension due to lower part =

= WeightW

u

F
d

d

u
= Upward tension due to upper part   F

F

F

Figure 20: Problem 3 (a)

(b)

FU − FD = W − FC

A (dT ) =
GMρAdr

r2
− ω2 r ρAdr

dT

dr
= GMρ

[
1

r2
− r

R3
g

]
(using Kepler’s third law) (42)

(c) Integrating Eq. (42)∫ b

a

dT =

∫
GMρ

(
1

r2
− r

R3
g

)
dr

Tb − Ta = GMρ

[
−1

r
− r2

2R3
g

]∣∣∣∣b
a

(43)

For r → Rg and T (R) = 0

T (Rg) = GMρ

[
− 3

2Rg

+
R2

2R3
g

+
1

R

]
(44)

For r → Rg and T (H) = 0

T (Rg) = GMρ

[
− 3

2Rg

+
H2

2R3
g

+
1

H

]
(45)

Equating Eqs. (44) and (45) we obtain

H =
R

2

√1 +
8R3

g

R3
− 1


= 1.51× 105 km

(d) See Fig. (21)
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T(r)

Rg rHR

Figure 21: Problem 3 (d)

(e) Maximum stress will be at r = Rg

Using Eq. (44)
T (Rg) = 379 GPa

Steel has tensile strength 6.37 GPa which is less than 379 GPa. Hence it
will not be feasible.

4.

T0 =
T1 + T2

2
, ∆ = T2 − T1, δ = T ′′ − T ′

T1 = 270K , T2 = 298K
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wd

Wall 2Wall 1

w

                  .T
1

T
2

K K=270 =298

T ’ T ’’

Figure 22: Problem 4

(a) For wall 1, qw =
kw
w

(T2 − T ′′)

For wall 2, qw =
kw
w

(T ′ − T1)

(b)
∆− δ = T2 − T ′′ + T ′ − T1

For stationary process,

T2 − T ′′ = T ′ − T1 (46)

∆− δ = 2(T2 − T ′′)
Hence,

qw =
kw
w

(∆− δ)
2
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(c)

E1 = εσT ′
4

+ (1− ε)E2

and

E2 = εσT ′′4 + (1− ε)E1

qr = E2 − E1

=
ε σ

(2− ε)
(T ′′4 − T ′4)

(d) Using Eq. (46) and given set of equations,

T ′′ = T0 +
δ

2
, T ′ = T0 −

δ

2
(47)

also,

T ′′4 − T ′4 = (T ′′2 − T ′2)(T ′′2 + T ′2)

= 2δ T0 [(T ′′ + T ′)2 − 2T ′′ T ′]

putting values from Eq. (47)

= 4δ T 3
0

[
1 +

(
δ

2T0

)2
]

again, qr = qw

ε σ

(2− ε)
(T ′′4 − T ′4) =

kw
w

(∆− δ)
2

since, (δ2 << T 2
0 )

ε σ

(2− ε)
4 δ T 3

0 =
kw
w

(∆− δ)
2

1− δ

∆
= 8 c T 3

0

δ

∆

where,

c =
σ εw

kw (2− ε)

δ =
∆

1 + 8cT 3
0

Now,

qr = qw =
kw
w

(∆− δ)
2

=
kw
w

(
∆ 4c T 3

0

1 + 8c T 3
0

)
(e)

c = 6.44× 10−10, w = 0.01 m, kw = 0.72 W·m−1 ·K−1

T0 = 284 K, ∆ = 28 K

qr = 107.22 W·m−2
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(f)

qcv =
NuKa

d
(T ′′ − T ′) =

NuKa

d
δ

qcv = qw

gives,

δ =
∆

1 +
2w kaNu

kw d

qcv =
Nu ka ∆ kw

kw d+ 2w kaNu

(g) Ignoring 2wkaNu

qcv ' 46.5 W·m−2

(h)

qcd =
ks
d

(T ′′ − T ′) =
ksδ

d

qcd = qw

From part (b),
kw
2w

(∆− δ) =
ks δ

d

which gives,

δ =
kw ∆ d

2wks + kw d

Hence,

qcd =
ks kw ∆

2wks + kw d

(i) ks = 0.05 W·m−1K−1, kw = 0.72 W·m−2

w = 0.01 m, d = 0.1 m
qcd = 13.8 W·m−2

(j) Since,

qcd < qcv < qr

Hence sheathing material is best for insulation.

5. See the brief solution.

6. (a) The force on one capacitor plate due to the other is

Fe =
Q2

1

2Aε0

Fe =
C2

1V
2

0 cos2(2πft)

2πa2ε0

Time - averaged force is

〈Fe〉 =
C2

1 V
2

0

4πε0 a2
(48)
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(b) Charge on Capacitor C2: Q2 = C2 V0 cos(2πft)

i2 = −C2 V0 2 πf sin(2πf t)

(note: wire has negligible resistance.)
Force on one ring due to the other

Fm = i2lB

Hence,

Fm =
µ0 b

h
(−C2V02πf sin(2πft))2

Time- averaged force is

〈Fm〉 =
µ0 b

2h
C2

2V
2

0 (2πf)2 (49)

(c) Equating Eqs. (48) and (49)

〈Fe〉 = 〈Fm〉

and noting c2 =
1

µ0 ε0

We obtain

c = (2π)3/2 a

(
b

h

)1/2
C2

C1

f (50)

(d) From Eq. (50) and given constants.

c = 2.99× 108 m·s−1

a

B

| B  = B   |

_
0 sin ω t

_

Figure 23: Problem 7

7. (a) Flux : φ = B0 sin(ωt) πa2N

ε = −dφ
dt

= −Nπa2B0 ω cosωt

From Kirchhoff’s Law,

i R + L
di

dt
= −Nπa2B0 ω cosωt (51)
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(b) Take i = Rl(i0e
jωt) (j2 = −1)

Substituting the complex form in Eq. ( 51), we obtain,

i0 =
N π a2B0 ω(R− jωL)

R2 + ω2 L2

This implies,

i =
N π a2B0 ω(R cosωt+ ωL sinωt)

R2 + ω2 L2

(c) The elemental force
dF = i dl ×B

is directed radially in. Substituting,

dF

dl
= −NB

2
0 πa

2ω

R2 + ω2L2
(R sinωt cosωt+ ω L sin2 ωt)

Time - averaged compressional force

dF

dl

∣∣∣∣
av

= −NB
2
0 πa

2ω2L

2(R2 + ω2L2)
(52)

dF

dl

∣∣∣∣
osc

= − NB2
0 πa

2ω

2(R2 + ω2L2)
(R sin 2ωt− ωL cos 2ωt) (53)

Net force on ring is zero by symmetry.

(d) From Eq. (52)

dF

dl

∣∣∣∣
av

= −π(10−2) 106 10−1

2(102 + 104)

' −π
2

10−1N

= 1.55 N·m−1

(e) i. From Eq. (53) the oscillating force has a frequency of 2ω and hence
the frequency of the sound is 120 Hz.

ii. The inclusion of the capacitor will result in

ωL→ ωL− 1

ωC
∴ the compressional force is lessened and may even become negative,
i.e. tensile and outward.
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(8 June 1936 - )

“In the fall of 1970 Ben Widom asked me to
address his statistical mechanics seminar on the
renormalization group. He was particularly in-
terested because Di Castro and Jona-Lasinio had
proposed applying the field theoretic renormal-
ization group formalism to critical phenomena,
but no one in Widom’s group could understand
Di Castro and Jona-Lasinio’s paper. In the course
of lecturing on the general ideas of fixed points
and the like I realized I would have to provide a
computable example, even if it was not accurate
or reliable. I applied the phase space cell analy-
sis to the Landau-Ginzburg model of the critical

point and tried to simplify it to the point of a calculable equation, mak-
ing no demands for accuracy but simply trying to preserve the essence
of the phase space cell picture. The result was a recursion formula in the
form of a nonlinear integral transformation on a function of one variable,
which I was able to solve by iterating the transformation on a computer.
I was able to compute numbers for exponents from the recursion formula
at the same time that I could show (at least in part) that it had a fixed
point and that the scaling theory of critical phenomena of Widom et
al. followed from the fixed point formalism. Two papers of 1971 on the
renormalization group presented this work.”
Kenneth Wilson, Nobel Laureate, 1982 on how a Nobel prize winning work was born
from an effort to cook up a simple example. [See also the Foreword]
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4 INPhO-2009

(39).

V

P

(0,0)

P

V0

0

Figure 24: Problem 39

(a) Since the P-V plot is linear (see Fig. (24))

P = mV + C

Note that at P = 0 , V = V0. Hence

C = −mV0

m =
−P0

V0

P =
−P0

V0

(V − V0) (54)

Rewriting we obtain

P

P0

+
V

V0

= 1 (P < P0, V < V0) (55)

(b) The ideal gas law (PV = RT ) for one mole of the gas implies

P =
RT

V

Using Eq.(55),
RT

V
= −P0

V0

(V − V0)

Rewriting,

T =
P0V

R

(
1− V

V0

)
(56)

(c) From part (b)
RT

P0

= V

(
1− V

V0

)
Differentiating with respect to T,

=⇒ R

P0

=
dV

dT

(
1− V

V0

)
+ V

(
− 1

V0

dV

dT

)
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=
dV

dT

(
1− 2V

V0

)
Rewriting,

dV

dT
=

RV0

P0(V0 − 2V )
(57)

(d) From part (c)
dT

dV
=
P0

R

(
1− 2V

V0

)
For maximum temperature,

dT

dV
= 0

This occurs at
V = V0/2

Hence

Tmax =
P0V0

4R
(58)

(e)

V
0

0
0

maxT

T

V

V / 2

Figure 25: Problem 39 (e)

Eq. (56) is a quadratic in V . See Fig. (25)

(f) Note that
Cp − Cv = R

and
Cv = Cp/γ

Hence

Cv =
R

γ − 1

(g) From the first law of thermodynamics

4Q = 4U +4W

where
4W = PdV

4Q = CdT
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4U = CvdT

Rewriting the first law,

CdT = CvdT + PdV

∴ C = Cv + P
dV

dT

=
R

γ − 1
+ P0

(
1− V

V0

)
R

P0

(
1− 2V

V0

) (From Eq. (54) and (57))

Rewriting,

C =
R

γ − 1
+

(V0 − V )R

(V0 − 2V )
(59)

(h) For the mixture of gases the “adiabatic” constant is

γ =

∑
niCpi∑
niCvi

=

5

2
R +

7

2
R

3

2
R +

5

2
R

(Since n = 1/2)

=
3

2

(i) Using γ =
3

2
in Eq. (59) we obtain

C = R

(
3− 5V

V0

)
(

1− 2V

V0

)

(j) Note that negative specific heat implies that temperature goes down al-
though heat is being pumped into the system. This is on account of the
peculiar linear nature of the process. Also note that temperature too
decreases for V > V0/2, the students are advised to calculate.
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3

4

5

0.2 0.4 0.6 0.8 1

2

1

0 V/V

/R

0

C

Figure 26: Problem 39 (j)

(29 July 1898-11 Jan.1988)

“Some of the young people I see, who are very
good, take physics... as a system you can do
things with, can calculate something with, and
they miss... the mystery of it : how very dif-
ferent it is from what you can see, and how
profound nature is...There is no good transla-
tion of the Yiddish word ‘Witz ’. It’s a joke
or a trick or a sleight of hand. You can al-
ways bulldoze your way to an answer, but it’s
the use of this kind of witty trick or sub-
tle approach that I have always liked about
physics.... I have always taken physics person-
ally....It’s been me and nature and nature is

sacred and profound.”
-Isidor Isaac Rabi, Nobel Laureate, 1944 on how not to approach a physics problem
and how to view nature with respect and awe.
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List of Acronyms

HBCSE Homi Bhabha Centre for Science Education
TIFR Tata Institute of Fundamental Research
IAPT Indian Association of Physics Teachers
IACT Indian Association of Chemistry Teachers
IATBS Indian Association of Teachers in Biological Sciences
NSE National Standard Examination

NSEP National Standard Examination in Physics
NSEC National Standard Examination in Chemistry
NSEB National Standard Examination in Biology
INO Indian National Olympiads

INPhO Indian National Physics Olympiads
INChO Indian National Chemistry Olympiads
INBO Indian National Biology Olympiads
OCSC Orientation cum Selection Camp
PDT Pre-departure Training Camp
IPhO International Physics Olympiad
IChO International Chemistry Olympiad
IBO International Biology Olympiad

NCERT National Council of Education Research and Training
CBSE Central Board of Secondary Education

IIT-JEE Indian Institute of Technology - Joint Entrance Examination
AIIMS All India Institute of Medical Sciences
DAE Department of Atomic Energy
DST Department of Science and Technology

MHRD Ministry of Human Resource Development
BRNS Board of Research in Nuclear Sciences
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IPhO and INPhO Syllabi

International Physics Olympiad Syllabus

General

a. The extensive use of the calculus (differentiation and integration) and the use
of complex numbers or solving differential equations should not be required to
solve the theoretical and practical problems.

b. Questions may contain concepts and phenomena not contained in the Syllabus
but sufficient information must be given in the questions so that candidates
without previous knowledge of these topics would not be at a disadvantage.

c. Sophisticated practical equipment likely to be unfamiliar to the candidates
should not dominate a problem. If such devices are used then careful instruc-
tions must be given to the candidates.

d. The original texts of the problems have to be set in the SI units.

A. Theoretical Part
The first column contains the main entries while the second column contains

comments and remarks if necessary.
1. Mechanics

a) Foundation of kinematics of a
point mass

Vector description of the position of the point
mass, velocity and acceleration as vectors

b) Newton's laws, inertial systems Problems may be set on changing mass
c) Closed and open systems, momen-
tum and energy, work, power
d) Conservation of energy, conserva-
tion of linear momentum, impulse
e) Elastic forces, frictional forces, the
law of gravitation, potential energy
and work in a gravitational field

Hooke's law, coefficient of friction (F/R =
const), frictional forces, static and kinetic,
choice of zero of potential energy

f) Centripetal acceleration, Kepler's
laws
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2. Mechanics of Rigid Bodies

a) Statics, center of mass, torque
Couples, conditions of equilibrium of
bodies

b) Motion of rigid bodies, translation, ro-
tation, angular velocity, angular accelera-
tion, conservation of angular momentum

Conservation of angular momentum
about fixed axis only

c) External and internal forces, equation
of motion of a rigid body around the fixed
axis, moment of inertia, kinetic energy of
a rotating body

Parallel axes theorem (Steiner's the-
orem), additivity of the moment of
inertia

d) Accelerated reference systems, inertial
forces

Knowledge of the Coriolis force for-
mula is not required

3. Hydromechanics No specific questions will be set on this but students
would be expected to know the elementary concepts of pressure, buoyancy and the
continuity law.

4. Thermodynamics and Molecular Physics

a) Internal energy, work and heat, first and
second laws of thermodynamics

Thermal equilibrium, quantities de-
pending on state and quantities de-
pending on process

b) Model of a perfect gas, pressure and
molecular kinetic energy, Avogadro's num-
ber, equation of state of a perfect gas, ab-
solute temperature

Also molecular approach to such sim-
ple phenomena in liquids and solids
as boiling, melting etc.

c) Work done by an expanding gas limited
to isothermal and adiabatic processes

Proof of the equation of the adiabatic
process is not required

d) The Carnot cycle, thermodynamic ef-
ficiency, reversible and irreversible pro-
cesses, entropy (statistical approach),
Boltzmann factor

Entropy as a path independent func-
tion, entropy changes and reversibil-
ity, quasistatic processes

5. Oscillations and waves

a) Harmonic oscillations, equation of har-
monic oscillation

Solution of the equation for harmonic
motion, attenuation and resonance -
qualitatively

©HBCSE-TIFR 90



H
B
C
SE

IPhO and INPhO Syllabi

b) Harmonic waves, propa-
gation of waves, transverse
and longitudinal waves, lin-
ear polarization, the clas-
sical Doppler effect, sound
waves

Displacement in a progressive wave and understanding of
graphical representation of the wave, measurements of ve-
locity of sound and light, Doppler effect in one dimension
only, propagation of waves in homogeneous and isotropic
media, reflection and refraction, Fermat's principle

c) Superposition of har-
monic waves, coherent
waves, interference, beats,
standing waves

Realization that intensity of wave is proportional to the
square of its amplitude. Fourier analysis is not required
but candidates should have some understanding that
complex waves can be made from addition of simple si-
nusoidal waves of different frequencies. Interference due
to thin films and other simple systems (final formulae
are not required), superposition of waves from secondary
sources (diffraction)

6. Electric Charge and Electric Field

a) Conservation of charge, Coulomb's law

b) Electric field, potential, Gauss' law
Gauss' law confined to simple symmetric
systems like sphere, cylinder, plate etc., elec-
tric dipole moment

c) Capacitors, capacitance, dielectric con-
stant, energy density of electric field

7. Current and Magnetic Field

a) Current, resistance, internal resis-
tance of source, Ohm's law, Kirchhoff's
laws, work and power of direct and al-
ternating currents, Joule's law

Simple cases of circuits containing non-ohmic
devices with known V-I characteristics

b) Magnetic field (B) of a current, cur-
rent in a magnetic field, Lorentz force

Particles in a magnetic field, simple applica-
tions like cyclotron, magnetic dipole moment

c) Ampere's law
Magnetic field of simple symmetric systems like
straight wire, circular loop and long solenoid

d) Law of electromagnetic induc-
tion, magnetic flux, Lenz's law, self-
induction, inductance, permeability, en-
ergy density of magnetic field
e) Alternating current, resistors, induc-
tors and capacitors in AC-circuits, volt-
age and current (parallel and series) res-
onances

Simple AC-circuits, time constants, final for-
mulae for parameters of concrete resonance cir-
cuits are not required
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8. Electromagnetic waves

a) Oscillatory circuit, frequency of oscilla-
tions, generation by feedback and resonance
b) Wave optics, diffraction from one and
two slits, diffraction grating, resolving
power of a grating, Bragg reflection,
c) Dispersion and diffraction spectra, line
spectra of gases
d) Electromagnetic waves as transverse
waves, polarization by reflection, polarizers

Superposition of polarized waves

e) Resolving power of imaging systems
f) Black body, Stefan-Boltzmann law Planck's formula is not required

9. Quantum Physics

a) Photoelectric effect, energy and impulse
of the photon

Einstein's formula is required

b) De Broglie wavelength, Heisenberg's un-
certainty principle

10. Relativity

a) Principle of relativity, addition of velocities, relativistic Doppler effect
b) Relativistic equation of motion, momentum, energy, relation between energy
and mass, conservation of energy and momentum

11. Matter

a) Simple applications of the Bragg equation
b) Energy levels of atoms and molecules (qualitatively), emission, absorption, spec-
trum of hydrogen like atoms
c) Energy levels of nuclei (qualitatively), alpha-, beta- and gamma-decays, absorp-
tion of radiation, halflife and exponential decay, components of nuclei, mass defect,
nuclear reactions

Indian National Physics Olympiad Syllabus

This is broadly equivalent to senior secondary level (Class XI and Class XII) of
the Central Board of Secondary Education (CBSE). For example it does not include
Fermat’s principle and special relativity. Some of the problems are unconventional,
of high difficulty level, and comparable to the International Olympiads.
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The Stages of the Indian Physics
Olympiad Program

The Olympiad programme is a 5 STAGE process for each subject separately.
Stage I for each subject is organized by the Indian Association of Physics Teachers
(IAPT) with the assistance of Indian Association Chemistry Teachers (IACT) and
Indian Association of Teachers in Biological Sciences (IATBS). All the subsequent
stages are organized by the Homi Bhabha Centre for Science Education (HBCSE).

Stage I : National Standard Examinations (NSEs) NSEs are usually conducted
in the last week of November at about 1000 centres all over India. Over 35,000
students enroll in the National Standard Examination in Physics (NSEP).

Stage II : Indian National Olympiad Examinations (INOs) Around 300 mer-
itorious students from NSEs are selected for Indian National Olympiad (INO)
examination in each subject. These examinations are usually conducted either
in the last week of January or in the first week of February at about 15 centres
in the country.

Stage III : Orientation Cum Salection Camp (OCSC) About 35 students in
each subject are chosen on the basis of their performance in INO exams. The
selected group of students in each subject are invited to the OCSC for two
to three weeks which are usually held in April-June. Five best students in
Physics (four in Chemistry and Biology each) are selected to represent India
at respective International Olympiads.

Stage IV : Pre-Departure Training Camp (PDT) The selected Indian teams
undergo rigorous training before departing for International Olympiads.

Stage V : Participation in International Olympiads Selected students and 2
to 3 teacher leaders and scientific observers constitute the delegation to rep-
resent India at the International Olympiads which are normally held in July.

Information regarding Stage I is available on
IAPT website - http://www.iapt.org.in
and information regarding stages II to V and details of eligibility for various stages
are available on
HBCSE website - http://olympiads.hbcse.tifr.res.in.
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Appendix D

Performance of The Indian Team

1998

Dates Place Student’s Name Place Medals

Abhishek Kumar Bokaro Silver
July 2, 1998 Vijay Bhat Kolkata Bronze

to Reykjavik, Shivi Kumar Bansal Obra (U.P.) Honourable Mention
July 10, 1998 Iceland Dilys Thomas Pune Honourable Mention

Saikat Guha Patna Honourable Mention

Delegation Leader : Prof. H.C.Pradhan (HBCSE, Mumbai)
Pedagogical Leader : Prof. T. S. Natrajan (IIT, Chennai)

1999

Dates Place Student’s Name Place Medals

Sandeep Bala Mumbai Silver
July 18, 1999 Harsh Madhyastha Bangalore Silver

to Padua, Italy Mayank Rawat Panchkula Silver
July 27, 1999 Amit Agarwal Chandigarh Silver

Suvrat Raju Delhi Bronze

Delegation Leader : Prof. R. M. Dharkar (IAPT)
Pedagogical Leader : Prof. Vijay A. Singh (IIT, Kanpur)

2000

Dates Place Student’s Name Place Medals

Navneet Loiwal Jaipur Gold
July 8, 2000 M. Arvind Chennai Gold

to Leicester, Abhineet Sawa Rourkela Silver
July 16, 2000 U.K. Nipun Kwatra Chandigarh Silver

V. Srikant Hyderabad Honourable Mention

Delegation Leader : Prof. Vijay A. Singh (IIT, Kanpur)
Pedagogical Leader : Prof. D. A. Desai (D. G. Ruparel College, Mumbai)
Scientific Observer : Prof. Arvind Kumar (HBCSE, Mumbai)
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2001

Dates Place Student’s Name Place Medals

Nandan Dixit Mumbai Gold
June 28, 2001 Arvind Thiagarajan Chennai Gold

to Antalya, Parag Agarwal Mumbai Gold
July 6, 2001 Turkey Naresh Satyan Bangalore Silver

S. Vijaykumar Bangalore Silver

Delegation Leader : Prof. Vijay A. Singh (IIT, Kanpur)
Pedagogical Leader : Prof. D. A. Desai (D. G. Ruparel College, Mumbai)

2002

Dates Place Student’s Name Place Medals

Ravishankar Sundararamam Mumbai Gold
July 21, 2002 Shantanu Bharadwaj Mathura Silver

to Bandung, Hirakendu Das Hyderabad Silver
July 30, 2002 Indonesia B. Sundeep Bangalore Silver

Kushal Mukherjee Bangalore Silver

Delegation Leader : Prof. Arvind Kumar (HBCSE, Mumbai)
Pedagogical Leader : Dr. Ravi Bhattacharjee (SGTB Khalsa College, Delhi)

2003

Dates Place Student’s Name Place Medals

Yashodhan Kanoria Mumbai Gold
August 3, 2003 Shaleen Harlalka Udaypur Gold

to Taipei, Shashank Dwivedi Bhilai Bronze
August 11, 2003 Taiwan Alekh Agarwal Bhopal Honourable Mention

Divjyot Sethi Delhi Honourable Mention

Delegation Leader : Dr. Ravi Bhattacharjee (SGTB Khalsa College, Delhi)
Pedagogical Leader : Dr. S. C. Samanta (Midnapore College, Midnapore)

2004

Dates Place Student’s Name Place Medals

Shubham Mittal New Delhi Gold
July 15, 2004 Ajit Kumar Nema Bangalore Silver

to Pohang, Kartik Mohta Nagpur Silver
July 23, 2004 South Korea Avin Mittal Agra Bronze

Ankur Goel Panchkula Bronze

Delegation Leader : Prof. Dipan Ghosh (IIT, Mumbai)
Pedagogical Leader : Dr. Rajesh Khaparde (HBCSE, Mumbai)
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2005

Dates Place Student’s Name Place Medals

Piyush Srivastav Allahabad Gold
July 3, 2005 Sameer Madan Panchkula Gold

to Salamanca, Tejaswi Venumadhavan Nerella Hyderabad Silver
July 12, 2005 Spain Hema Chandra Prakash Movva Hyderabad Silver

Arjun Radhakrishna Bangalore Bronze

Delegation Leader : Dr. Ravi Bhattacharjee (SGTB Khalsa College, Delhi)
Pedagogical Leader : Dr. Rajesh Khaparde (HBCSE, Mumbai)
Scientific Observer : Dr. Bhupati Chakravarti (City College, Kolkata)

2006

Dates Place Student’s Name Place Medals

Mehul Tikekar Mumbai Gold
July 8, 2006 Raghu Mahajan Chandigarh Gold

to Singapore Harish Ravi Bangalore Bronze
July 17, 2006 Divyanshu Jha Patna Bronze

Neha Rambhia Mumbai Bronze

Delegation Leader : Dr. Charudatt Kadolkar (IIT, Guwahati)
Pedagogical Leader : Prof. B. N. Chandrika (VVSFG College for Women, Bangalore)
Scientific Observer : Mr. Shirish Pathare (HBCSE, Mumbai)

2007

Dates Place Student’s Name Place Medals

Raman Sharma Jaipur Gold
July 13, 2007 Rohit Singh Dehradun Gold

to Isfahan, Pratyush Pandey Jaipur Silver
July 22, 2007 Iran Harsh Pareek Mumbai Silver

Vivek Lohani Almora Honourable Mention

Delegation Leader : Dr. Charudatt Kadolkar (IIT, Guwahati)
Pedagogical Leader : Prof. Vijay A. Singh (HBCSE, Mumbai)

2008

Dates Place Student’s Name Place Medals

Garvit Juniwal Jaipur Gold
July 20, 2008 Kunal Yogen Shah Mumbai Gold

to Hanoi, Nishant Totla Aurangabad Gold
July 29, 2008 Vietnam Shitikanth Patna Gold

Saurabh Goyal Kota Silver

Delegation Leader : Dr. Pramendra R. Singh (Jagdam College, J. P. University, Chhapra)
Pedagogical Leader : Dr. Vishwajeet Kulkarni (Smt. Parvatibai Chowgule College, Goa)
Scientific Observer : Dr. Charudatt Kadolkar (IIT, Guwahati)
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Performance of The Indian Team

2009

Dates Place Student’s Name Place Medals

Gopi Sivakanth Yeleswaram Gold
July 12, 2009 Nitin Jain Faridabad Gold

to Merida Yucatan, Priyank Pradeep Parikh Mumbai Gold
July 19, 2009 Mexico Shubham Tulsiani Jodhpur Gold

Vinit Atal Pune Silver

Delegation Leaders : (1) Prof. H. C. Pradhan (HBCSE, Mumbai)
: (2) Dr. Pramendra R. Singh (Jagdam College, J. P. University, Chhapra)

Scientific Observer : Shri A. M. Shaker (K. J. Somaiya College, Mumbai)

Like the Sports Olympics, the Olympiads are individual events and there is no
official ranking of nations by the International Olympiad Committee. Our ranking
though unofficial is based on aggregate national scores.

Year Countries Participated Rank
1998 56 10
1999 62 10
2000 64 3
2001 65 4
2002 67 7
2003 54 8
2004 71 9
2005 77 8
2006 89 8
2007 70 6
2008* 82 3
2009* 76 3

* 2008 and 2009 Physics Olympiad team performances (4 Golds and 1 Silver)
represent best efforts by Indian team in any of the international olympiads (As-
tronomy, Mathematics, Physics, Chemistry and Biology) India has participated so
far.
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