IOQM 2022 Part B

Official Solutions

Problem 1. Let D be an interior point on the side $B C$ of an acute-angled triangle $A B C$. Let the circumcircle of triangle $A D B$ intersect $A C$ again at $E(\neq A)$ and the circumcircle of triangle $A D C$ intersect $A B$ again at $F(\neq A)$. Let $A D, B E$ and $C F$ intersect the circumcircle of triangle $A B C$ again at $D_{1}(\neq A), E_{1}(\neq B)$ and $F_{1}(\neq C)$, respectively. Let I and I_{1} be the incentres of triangles $D E F$ and $D_{1} E_{1} F_{1}$, respectively. Prove that E, F, I, I_{1} are concyclic.

Solution. Note that

$$
\angle C F_{1} D_{1}=\angle C A D_{1}=\angle E A D=\angle E B D=\angle E_{1} B C=\angle E_{1} F_{1} C,
$$

so $F_{1} C$ is the bisector of $\angle D_{1} E_{1} F_{1}$. Similarly, $E_{1} B$ is the bisector of $\angle D_{1} E_{1} F_{1}$, implying $I_{1}=B E_{1} \cap C F_{1}$. Now,

$$
\begin{aligned}
\angle E D F=\angle E D A+\angle F D A=\angle E B A & +\angle F C A \\
& =\angle E_{1} B A+\angle F_{1} C A=\angle E_{1} D_{1} A+\angle F_{1} D_{1} A=\angle E_{1} D_{1} F_{1} .
\end{aligned}
$$

Therefore

$$
\angle E I F=90^{\circ}+\frac{1}{2} \angle E D F=90^{\circ}+\frac{1}{2} \angle E_{1} D_{1} F_{1}=\angle E_{1} I_{1} F_{1}=\angle E I_{1} F
$$

which proves the required concyclicity.
Problem 2. Find all natural numbers n for which there exists a permutation σ of $1,2, \ldots, n$ such that

$$
\sum_{i=1}^{n} \sigma(i)(-2)^{i-1}=0
$$

Note: A permutation of $1,2, \ldots, n$ is a bijective function from $\{1,2, \ldots, n\}$ to itself.

Solution. Suppose that $n \equiv 1(\bmod 3)$ and σ a permutation of $1,2, \ldots, n$. Then

$$
\sum_{i=1}^{n} \sigma(i)(-2)^{i-1} \equiv \sum_{i=1}^{n} \sigma(i)=\frac{n(n+1)}{2} \quad(\bmod 3)
$$

and hence the left-hand side is non-zero.
We now show by induction that if $n \equiv 0$ or $2(\bmod 3)$ then there exists a permutation of $1,2, \ldots, n$ satisfying the given condition.

If $n=2$ then the permutation given by $\sigma(1)=2, \sigma(2)=1$ satisfies the given condition. Similarly, if $n=3$ then the permutation $\sigma(1)=2, \sigma(2)=3, \sigma(3)=1$ satisfies the given condition.

Suppose that for $n=m$ there exists a permutation σ satisfying the given condition. We consider the permutation τ of $1,2, \ldots, m+3$ given by $\tau(1)=2, \tau(2)=3, \tau(m+3)=1$ and $\tau(i)=\sigma(i-2)+3$ for $i=3,4, \ldots, m+2$. Then

$$
\begin{aligned}
\sum_{i=1}^{m+3} \tau(i)(-2)^{i-1} & =2-6+(-2)^{m+2}+\sum_{i=3}^{m+2} 3 \cdot(-2)^{i-1} \\
& =2-6+(-2)^{m+2}-4 \cdot\left((-2)^{m}-1\right)=0
\end{aligned}
$$

Thus, by induction it follows that for every $n \equiv 0$ or $2(\bmod 3)$ there exists a permutation satisfying the given condition.

Problem 3. For a positive integer N, let $T(N)$ denote the number of arrangements of the integers $1,2, \ldots, N$ into a sequence $a_{1}, a_{2}, \ldots, a_{N}$ such that $a_{i}>a_{2 i}$ for all $i, 1 \leq i<2 i \leq N$ and $a_{i}>a_{2 i+1}$, for all $i, 1 \leq i<2 i+1 \leq N$. For example, $T(3)$ is 2 , since the possible arrangements are 321 and 312 .
(a) Find $T(7)$.
(b) If K is the largest non-negative integer so that 2^{K} divides $T\left(2^{n}-1\right)$, show that $K=$ $2^{n}-n-1$.
(c) Find the largest non-negative integer K so that 2^{K} divides $T\left(2^{n}+1\right)$.

Solution. (a) Given an arrangement $a_{1}, a_{2}, \ldots, a_{7}$, satisfying the given conditions, we can build a binary tree with nodes as in the Figure below. At each node, the root node

is greater than the child nodes. Conversely, any such tree gives a valid arrangement. Observing that the root of the tree must contain the maximum of the numbers, we can choose 3 out of the other 6 numbers in $\binom{6}{3}$ ways and build the left tree and the right tree, each in 2 ways and hence the number of such trees is $2 \cdot 2 \cdot\binom{6}{3}=80$.
(b) Observe that $T(N)$ is also the number of ways of arranging any N distinct numbers into a sequence $a_{1}, a_{2}, \ldots, a_{N}$ satisfying the given conditions. Also, the given conditions imply that $a_{1}=$ maximum of the numbers. Now, leaving out the maximum, the rest of the $2^{n}-2$ numbers can be split into two groups of $2^{n-1}-1$ numbers each and these can be individually put into a sequences $b_{1}, b_{2} \ldots, b_{2^{n-1}-1}$ and $c_{1}, c_{2}, \ldots, c_{2^{n-1}-1}$ satisfying the
conditions in $T(n-1)$ ways each. Now, the required arrangement of the original given sequence can be obtained as follows:

$$
a_{1}, b_{1}, c_{1}, b_{2}, b_{3}, c_{2}, c_{3}, b_{4}, b_{5}, b_{6}, b_{7}, c_{4}, c_{5}, c_{6}, c_{7}, \ldots
$$

This gives

$$
\begin{equation*}
T\left(2^{n}-1\right)=T\left(2^{n-1}-1\right)^{2}\binom{2^{n}-2}{2^{n-1}-1} \tag{1}
\end{equation*}
$$

We find the highest power of 2 that divides $\binom{2^{n}-2}{2^{n-1}-1}$:
We have

$$
\begin{aligned}
2^{n-2}\binom{2^{n}}{2^{n-1}} & =2^{n-2} \cdot \frac{2^{n}!}{2^{n-1}!2^{n-1}!} \\
& =2^{n-2} \cdot \frac{2^{n}\left(2^{n}-1\right)\left(2^{n}-2\right)!}{2^{n-1}\left(2^{n-1}-1\right)!2^{n-1}\left(2^{n-1}-1\right)!} \\
& =\left(2^{n}-1\right)\binom{2^{n}-2}{2^{n-1}-1}
\end{aligned}
$$

Now, the highest power of 2 that divides $\binom{2^{n}}{2^{n-1}}$ is

$$
\left(2^{n-1}+2^{n-2}+\cdots+1\right)-2\left(2^{n-2}+2^{n-3}+\cdots+1\right)=1
$$

Hence the highest power of 2 that divides $\binom{2^{n}-2}{2^{n-1}-1}$ is $n-1$.
From the recurrence (1), if t_{n} is the highest power of 2 dividing $T\left(2^{n}-1\right)$, then $t_{n}=$ $2 t_{n-1}+n-1$. From the initial conditions, $t_{1}=0, t_{2}=1, t_{3}=4$, we obtain, by an easy induction, that $t_{n}=2^{n}-n-1$.
(c) Suppose that $N=2^{n}+1$. It is easy to see that

$$
T\left(2^{n}+1\right)=T\left(2^{n-1}-1\right) T\left(2^{n-1}+1\right)\binom{2^{n}}{2^{n-1}+1}
$$

The highest power of 2 dividing $\binom{2^{n}}{2^{n-1}+1}$ is n :

$$
\left(2^{n-1}+1\right)\binom{2^{n}}{2^{n-1}+1}=\binom{2^{n}}{2^{n-1}} \cdot 2^{n-1}
$$

Since the highest power of 2 dividing $\binom{2^{n}}{2^{n-1}}$ is 1 , it follows that the highest power of 2 dividing $\binom{2^{n}}{2^{n-1}+1}$ is n. Thus, if s_{n} denotes the highest power of 2 dividing $T\left(2^{n}+1\right)$, then

$$
s_{n}=s_{n-1}+2^{n-1}-(n-1)-1+n=s_{n-1}+2^{n-1}
$$

Hence $s_{n}-s_{1}=2^{n}-2$ and since $s_{1}=1$ (since $T(3)=2$), it follows that the highest power of 2 dividing $T\left(2^{n}+1\right)$ is $2^{n}-1$.

