
Solutions to RMO-2014 problems

1. Let ABC be a triangle and let AD be the
perpendicular from A on to BC. Let K,L,M
be points on AD such that AK = KL =
LM = MD. Draw lines parallel to BC
through K,L,M . If the sum of the areas
of the shaded regions is equal to the sum of
the areas of the unshaded regions, prove that
BD = DC.

Solution: let BD = 4x, DC = 4y and AD = 4h. Then the sum of the areas of the
shaded regions is

1

2
h
(
x + (y + 2y) + (2x + 3x) + (3y + 4y)

)
=

h(6x + 10y)

2
.

The sum of the areas of the unshaded regions is

1

2
h
(
y + (x + 2x) + (2y + 3y) + (3x + 4x)

)
=

h(10x + 6y)

2
.

Therefore the given condition implies that

6x + 10y = 10x + 6y.

This gives x = y. Hence BD = DC.

2. Let a1, a2, . . . , a2n be an arithmetic progression of positive real numbers with com-
mon difference d. Let
(i) a21 + a23 + · · ·+ a22n−1 = x, (ii) a22 + a24 + · · ·+ a22n = y, and
(iii) an + an+1 = z.

Express d in terms of x, y, z, n.

Solution: Observe that

y − x = (a22 − a21) + (a24 − a23) + · · ·+ (a22n − a22n−1).

The general difference is

a22k − a22k−1 =
(
a2k + a2k−1

)
d =

(
2a1 +

(
(2k − 1) + (2k − 2)

)
d
)
d.

Therefore

y − x =
(
2na1 + (1 + 2 + 3 + · · · (2n− 1))d

)
d = nd

(
2a1 + (2n− 1)d

)
.

We also observe that

z = an + an+1 = 2a1 + (2n− 1)d.

It follows that y − x = ndz. Hence d = (y − x)/nz.



3. Suppose for some positive integers r and s, the number 2r is obtained by permuting
the digits of the number 2s in decimal expansion. Prove that r = s.

Solution: Suppose s ≤ r. If s < r then 2s < 2r. Since the number of digits in 2s

and 2r are the same, we have 2r < 10 × 2s < 2s+4. Thus we have 2s < 2r < 2s+4

which gives r = s + 1 or s + 2 or s + 3. Since 2r is obtained from 2s by permuting
its digits, 2r − 2s is divisible by 9. If r = s + 1, we see that 2r − 2s = 2s and it is
clearly not divisible by 9. Similarly, 2s+2− 2s = 3× 2s and 2s+3− 2s = 7× 2s and
none of these is divisible by 9. We conclude that s < r is not possible. Hence r = s.

4. Is it possible to write the numbers
17, 18, 19, . . . , 32 in a 4 × 4 grid of unit
squares, with one number in each square,
such that the product of the numbers in each
2×2 sub-grids AMRG, GRND, MBHR and
RHCN is divisible by 16?

Solution: NO! The product of all the numbers in all the four subsquares is divisible
by 16× 16× 16× 16 = 216. But we also observe that

17× 18× 19× · · · × 32 = 216k

where k is an odd integer. Observe that there is 32 = 25 and it must appear in some
subsquare. Hence there will be 211 available for the product of the remaining three
subsquares. But they must account for 16 × 16 × 16 = 212. This shortage shows
that it is not possible to write 16 numbers in 16 squares such that the product of
four numbers in each subsquares is divisible by 16.

5. Let ABC be an acute-angled triangle and let H be its ortho-centre. For any point
P on the circum-circle of triangle ABC, let Q be the point of intersection of the line
BH with the line AP . Show that there is a unique point X on the circum-circle of
ABC such that for every point P 6= A,B, the circum-circle of HQP pass through
X.

Solution: We consider two possibilities: Q lying between A and P ; and P lying
between A and Q. (See the figures.)

In the first case, we observe that

∠HXC = ∠HXP + ∠PXC = ∠AQB + ∠PAC,

since Q,H,X, P are concyclic and P,A,X,C are also concyclic. Thus we get

∠HXC = ∠AQE + ∠QAE = 90◦

because BE ⊥ AC.
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In the second case, we have

∠HXC = ∠HXP + ∠PXC = ∠HQP + ∠PAC;

the first follows from H,X,Q, P are concyclic; the second follows from the concyclic-
ity of A,X,C, P . Again BE ⊥ AC shows that ∠HXC = 90◦.

Thus for any point P 6= A,B on the circumcircle of ABC, the point X of intersection
of the circumcircles of ABC and HPQ is such that ∠HXC = 90◦. This means X
is precisely the point of intersection of the circumcircles of HEC and ABC, which
is independent of P .

6. Let x1, x2, . . . , x2014 be positive real numbers such that
∑2014

j=1 xj = 1. Determine
with proof the smallest constant K such that

K
2014∑
j=1

x2j
1− xj

≥ 1.

Solution: Let us take the general case: {x1, x2, . . . , xn} are positive real numbers
such that

∑n
k=1 xk = 1. Then

n∑
k=1

x2k
1− xk

=
n∑

k=1

x2k − 1

1− xk
+

n∑
k=1

1

1− xk
=

n∑
k=1

(−1− xk) +
n∑

k=1

1

1− xk
.

Now the first sum is −n − 1. We can estimate the second sum using AM-HM
inequality:

n∑
k=1

1

1− xk
≥ n2∑n

k=1(1− xk)
=

n2

n− 1
.

Thus we obtain
n∑

k=1

x2k
1− xk

≥ −(1 + n) +
n2

n− 1
=

1

n− 1
.

Here equality holds if and only if all xj ’s are equal. Thus we get the smallest
constant K such that

K

2014∑
j=1

x2j
1− xj

≥ 1

to be 2014− 1 = 2013.
———-0———-
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