# Indian Olympiad Qualifier in Chemistry (IOQC) 2020-2021

conducted jointly by

Homi Bhabha Centre for Science Education (HBCSE-TIFR)

and

Indian Association of Physics Teachers (IAPT)

# Part II: Indian National Chemistry Olympiad (INChO)

Homi Bhabha Centre for Science Education (HBCSE-TIFR)

18 marks

### **Persistent radical – TEMPO**



 $2H_2O + 2e^- \rightleftharpoons H_2 + 2OH^-$ 

Working electrode is the anode and counter electrode is the cathode.



Esters





14 marks



2.6 i)



# Problem 3

16 marks

## **Ozone in Troposphere**

| 3.1 | a: CO <sub>2</sub>              | <b>b</b> : H• | <b>c</b> : O <sub>2</sub>                                              | <b>d</b> : NO <sub>2</sub> | e: OH• |
|-----|---------------------------------|---------------|------------------------------------------------------------------------|----------------------------|--------|
|     | Net reaction from steps i to v: |               | $\mathrm{CO} + \mathrm{2O}_2 \rightarrow \mathrm{CO}_2 + \mathrm{O}_3$ |                            |        |

3.2

| , | S1-S5 | ( <b>R1-R7</b> ) | Supporting Graph(s) (G1-G9) |
|---|-------|------------------|-----------------------------|
|   | S2    | R1               | G6, G9 / G4, G7             |
|   | S5    | R6               | G1, G4, G7 / G3, G6, G9     |

|              | S<br>S       | tatement<br>1-S5               | Supporting facts ( <b>R1-R7</b> ) | Supporting Graph(s) (G1-G9) |
|--------------|--------------|--------------------------------|-----------------------------------|-----------------------------|
| ii) incorrec | st. S        | 1                              | R4                                | G5, G8                      |
|              | S            | 3                              | R2, R7                            | G1, G3                      |
|              | S            | 4                              | R7, R1                            | G7, G9                      |
| C            | $D_3 + 2H^+$ | $+2\Gamma \rightarrow I_2 + C$ | $D_2 + H_2O$ ,                    |                             |

 $I_2 + I^- \rightarrow I_3^-$ 

Moles of  $I_3^-$  produced =  $2.6 \times 10^{-8}$  mol

|            | Concentration of ozone by mass = <b>211 ppb</b> |
|------------|-------------------------------------------------|
| February 8 | , 2021                                          |

 $1 \mod O_3 = 1 \mod I_3^-$ 

22 marks

## Chlorhexidine



4.6

Typical aggregate size at this concentration is 2500/898 ~ **3 units** 

4.7

#### (i) 1% solution of NaCl = 10.0/58.44 = 0.17 M.

 $Ksp = [ChH_2^{2+}][Cl^-]^2$ 

Since concentration of ChH<sub>2</sub>G<sub>2</sub>, s<< 0.17

 $2.1\times 10^{-9} {=} [s] [2.89\times 10^{-2}]$ 

Thus chloride salt will precipitate and effective concentration of  $ChH_2G_2$  in NaCl solution,  $s = 0.72 \times 10^{-7}$  mol/L.

#### Effectiveness will decrease.

(ii) 0.1% solution of  $ChH_2G_2 = 1/898 = 0.0011 \text{ M}$ 

Concentration of acetate ions, x in 0.9 M Acetic acid solution is given by

 $x^2 / (0.9 - x) = 1.76 \times 10^{-5}$ 

Ionic product  $[ChH_2^{2+}][A^-]^2 = 0.0011 \times 0.0039 \times 0.0039 = 1.67 \times 10^{-8}$  which is much less than solubility product of Ch acetate.

Effectiveness will not decrease.





9 marks

## **Helium in Rocks**

5.1 Since mass number changes only in  $\alpha$ -particle emission,

helium nuclei produced = 8.

5.2

The decay schemes are as follows-1.  ${}^{238}U \rightarrow 8 {}^{4}He + {}^{206}Pb$ 2.  ${}^{235}U \rightarrow 7 {}^{4}He + {}^{207}Pb$ 3.  ${}^{232}Th \rightarrow 6 {}^{4}He + {}^{208}Pb$ The relative production rates  ${}^{238}U : {}^{232}Th : {}^{235}U$   $8 \times [{}^{238}U] \times k_{238}: 6 \times [{}^{232}Th] \times k_{232}: 7 \times [{}^{235}U] \times k_{235}$ = 24.8: 5.99: 1 = 25: 6: 1

5.3

At STP, He production rate from 1 g  $^{238}$ U =  $12.72 \times 10^{-8}$  cm<sup>3</sup> yr<sup>-1</sup> Similarly, He production rate from 1g  $^{232}$ Th =  $3.15 \times 10^{-8}$  cm<sup>3</sup> yr<sup>-1</sup> Similarly, He production rate from 1g  $^{235}$ U =  $0.52 \times 10^{-8}$  cm<sup>3</sup> yr<sup>-1</sup>

Assuming He production rate is constant over the entire residence time, Residence time of water = Amount of He found per g of rock/ Production rate of He per g of rock

= 953314 years