
Solutions to INMO-2020 problems

1. Let Γ1 and Γ2 be two circles of unequal radii, with centres O1 and O2 respectively, in the plane
intersecting in two distinct points A and B. Assume that the centre of each of the circles Γ1

and Γ2 is outside the other. The tangent to Γ1 at B intersects Γ2 again in C, different from
B; the tangent to Γ2 at B intersects Γ1 again in D, different from B. The bisectors of ∠DAB
and ∠CAB meet Γ1 and Γ2 again in X and Y , respectively, different from A. Let P and Q be
the circumcentres of triangles ACD and XAY , respectively. Prove that PQ is the perpendicular
bisector of the line segment O1O2.

Solution:

Let ∠CBA = α and ∠DBA = β. Then ∠BDA = α and ∠BCA = β. We also observe that
∠AO1O2 = (∠AO1B/2) = α and, simiarly, ∠AO2O1 = β. Hence

∠O1AO2 = 180◦ − (α+ β).

We also have

∠PO1A =
∠DO1A

2
=

2∠DBA
2

= ∠DBA = β.

Hence ∠PO1O2 = ∠PO1A+∠AO1O2 = β+α. Similarly, we can get ∠PO2O1 = α+β. It follows
that P lies on the perpendicular bisector of O1O2.

Now we observe that

∠XQY = 360◦ − 2∠XAY = 360◦ − 2(180◦ − α− β) = 2(α+ β).

This gives

∠O1QO2 =
1

2
(∠XQA+ ∠Y QA) =

∠XQY
2

= α+ β.

This shows that A,O1, O2, Q are concyclic. We also have

∠ABX = ∠ABD + ∠DBX = β + ∠DAX = β +
∠DAB

2
;

∠ABY = ∠ABC + ∠CBY = α+ ∠CAY = α+
∠BAC

2
.

Adding we obtain

∠ABX + ∠ABY = α+ β +
1

2
(∠DAB + ∠BAC) = α+ β + (180◦ − α− β) = 180◦.



Hence X,B, Y are collinear. Now

∠QAX =
1

2
(180◦ − ∠AQX) = 90◦ − β;

∠XAO1 =
1

2
(180◦ − ∠XO1A) = 90◦ − 1

2
(360◦ − 2∠ABX) = ∠ABX − 90◦.

Hence

∠QAO1 = 90◦ − β + ∠ABX − 90◦ = ∠ABX − β =
∠DAB

2
=

∠O1AO2

2
.

This shows that AQ bisects ∠O1AO2 and therefore the chords QO1 and QO2 subtend equal angles
on the circumference of the circle passing through QO2AO1. Hence QO2 = QO1. This means Q
lies on the perpendicular bisector of O1O2.

Combining, we get that PQ is the perpendicular bisector of O1O2.

2. Suppose P (x) is a polynomial with real coefficients satsfying the condition P (cos θ + sin θ) =
P (cos θ − sin θ), for every real θ. Prove that P (x) can be expressed in the form

P (x) = a0 + a1(1− x2)2 + a2(1− x2)4 + · · ·+ an(1− x2)2n,

for some real numbers a0, a1, a2, . . . , an and nonnegative integer n.

Solution: Changing θ to θ − π/2, we see that

P (sin θ + cos θ) = P (sin θ − cos θ)

This shows that P (x) = P (−x) for all x ∈ [−
√

2,
√

2] and as P is a polynomial, in fact,

P (x) = P (−x)

for all x ∈ R . Hence P (x) is an even polynomial; P (x) = Q(x2) for some polynomial Q(x). This
gives

Q(1 + sin(2θ)) = P (cos θ + sin θ) = P (cos θ − sin θ) = Q(1− sin(2θ)).

Taking t = sin(2θ), we see that Q(1 + t) = Q(1− t). Hence Q(0) = Q(2)

Consider Q(t) − Q(0). This vanishes both at t = 0 and t = 2. Hence t(2 − t) is a factor of
Q(t)−Q(0). We obtain

Q(t)−Q(0) = t(2− t)h(t)

for some polynomial h(t). Using Q(1 + t) = Q(1 − t), it follows that h(1 + t) = h(1 − t). Hence
by induction we get

Q(t) =

n∑
k=0

bkt
k(2− t)k.

Hence

P (x) = Q(x2) =

n∑
k=0

bk(x2(2− x2))k =

n∑
k=0

bk
(
1− (1− x2)2

)k
.

Using binomial theorem, we can write this as

P (x) =

n∑
k=0

ak(1− x2)2k,

for some coefficients ak, 0 ≤ k ≤ n.

3. Let X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let S ⊆ X be such that any nonnegative integer n can be
written as p + q where the nonnegative integers p, q have all their digits in S. Find the smallest
possible number of elements in S.

Solution: We show that 5 numbers will suffice. Take S = {0, 1, 3, 4, 6}. Observe the following
splitting:



n a b
0 0 0
1 0 1
2 1 1
3 0 3
4 1 3
5 1 4
6 3 3
7 3 4
8 4 4
9 3 6

Thus each digit in a given nonnegative integer is split according to the above and can be written
as a sum of two numbers each having digits in S.

We show that |S| > 4. Suppose |S| ≤ 4. We may take |S| = 4 as adding extra numbers to
S does not alter our argument. Let S = {a, b, c, d}. Since the last digit can be any one of the
numbers 0, 1, 2, . . . , 9, we must be able to write this as a sum of digits from S, modulo 10. Thus
the collection

A = {x+ y (mod 10)|x, y ∈ S}

must contain {0, 1, 2, . . . , 9} as a subset. But A has at most 10 elements (
(
4
2

)
+ 4). Thus each

element of the form x + y (mod 10), as x, y vary over S, must give different numbers from
{0, 1, 2, . . . , 9}.
Consider a+a, b+ b, c+c, d+d modulo 10. They must give 4 even numbers. Hence the remaining
even number must be from the remaining 6 elements obtained by adding two distinct members
of S. We may assume that even number is a + b (mod 10). Then a, b must have same parity. If
any one of c, d has same parity as that of a, then its sum with a gives an even number, which is
impossible. Hence c, d must have same parity, in which case c+ d (mod 10) is even, which leads
to a contradiction. We conclude that |S| ≥ 5.

4. Let n ≥ 3 be an integer and let 1 < a1 ≤ a2 ≤ a3 ≤ · · · ≤ an be n real numbers such that
a1 + a2 + a3 + · · ·+ an = 2n. Prove that

a1a2 · · · an−1 + a1a2 · · · an−2 + · · ·+ a1a2 + a1 + 2 ≤ a1a2 · · · an.

Solution: We use Chebyshev’s inequality. Observe

n(a1a2 · · · an−1 + a1a2 · · · an−2 + · · ·+ a1 + 1)

= (a1a2 · · · an−1 + a1a2 · · · an−2 + · · ·+ a1 + 1)((an − 1) + (an−1 − 1) + · · ·+ (a1 − 1))

≤ n
(
a1a2 · · · an−1(an − 1) + · · ·+ a1(a2 − 1) + 1(a1 − 1)

)
≤ n(a1a2 · · · an − 1).

It follows that

a1a2 · · · an−1 + a1a2 · · · an−2 + · · ·+ a1 + 1 ≤ a1a2 · · · an − 1.

This gives the required inequality.

5. Infinitely many equidistant parallel lines are drawn in the plane. A positive integer n ≥ 3 is called
frameable if it is possible to draw a regular polygon with n sides all whose vertices lie on these
lines and no line contains more than one vertex of the polygon.

(a) Show that 3, 4, 6 are frameable.

(b) Show that any integer n ≥ 7 is not frameable.



(c) Determine whether 5 is frameable.

Solution: For n = 3, 4, 6 it is possible to draw regular polygons with vertices on the parallel
lines (note that when we show a regular hexagon is a framed polygon, it includes the equilateral
triangle case).

Figure 1:

Figure 2:

Figure 3:



We will prove that it is not possible for n ≥ 7. In fact, we prove a stronger statement that we can
not draw other polygons with vertices on the lines (even if we allow more than one vertex to lie
on the same line).

First observe that if A,B are points on the lines and C is another point on a line, if we locate

Figure 4:

Figure 5:

point D such that CD is parallel and equal to AB, then D also lies on a line. Suppose that we
have a regular polygon A1A2 . . . An, where n ≥ 6, with all the vertices on the grid lines. Choose a
point O on a grid line and draw segments OBi equal and parallel to AiAi+1, for i = 1, 2, . . . , n−1
and OBn parallel and equal to AnA1. The points Bi also lie on the grid lines and form a regular

polygon with n sides. Consider the ratio k =
B1B2

A1A2
. Since n > 6, the ∠B1OB2 < 360◦/6 and

hence is the smallest angle in the triangle B1OB2 (note that the triangle B1OB2 is isosceles).
Thus k < 1. Hence starting with a polygon with vertices on grid lines, we obtain another polygon
with ratio of side lengths k < 1. Repeating this process, we obtain a polygon with vertices on
grid lines with ratio of sides km for any m. This is a contradiction since the length of the side of
a polygon with vertices on grid lines can not be less than the distance between the parallel lines.
Thus for n > 6, we can not draw a polygon with vertices on the grid lines.

The above proof fails for n = 5. In this case, draw OB1, OB
′
1 parallel and equal to A1A2, in

opposite directions (see Figure 5), and similarly for other sides. Then we obtain a regular decagon
with vertices on the grid lines and we have proved that this is impossible.

6. A stromino is a 3 × 1 rectangle. Show that a 5 × 5 board divided into twenty-five 1 × 1 squares



cannot be covered by 16 strominos such that each stromino covers exactly three unit squares of
the board and every unit square is covered by either one or two strominos. (A stromino can be
placed either horizontally or vertically on the board.)

Solution: Suppose on the contrary that it is possible to cover the board with 16 strominos such
that each unit square is covered by either one or two strominos. If there are k squares that are
covered by exactly one stromino then 2(25 − k) + k = 163 = 48 and hence k = 2. Thus there
are exactly two squares which are covered by only one stromino. We colour the board with three
colours red, blue, green as follows. The square corresponding to the i-th row and the j-th column
is coloured red if i + j ≡ 0 (mod 3), green if i + j ≡ 1 (mod 3) and blue otherwise. Then there
are 9 red squares, 8 green squares and 8 blue squares. Note that each stromino covers exactly one
square of each colour. Therefore the two squares that are covered by only one stromino are both
red. For each such square i+ j ≡ 0 (mod 3) where i and j are its row and column number.

We now colour the board with a different scheme. We colour the square corresponding to the i-th
row and the j-th column red if i− j ≡ (mod 3), green if i− j ≡ 1 (mod 3) and blue otherwise.
Again, there are 9 red squares and hence the two squares covered by only one stromino are both
red. For each such square i− j ≡ 0 (mod 3) where i and j are its row and columne number Thus,
each of the two squares covered by only one stromino satisfies i + j ≡ 0 (mod 3) and i − j ≡ 0
(mod 3) where i and j are its row and column number. This implies that i = j = 3. This is a
contradiction because there is only one such square.
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