Regional Mathematical Olympiad-2019

Time: 3 hours
October 20, 2019
Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. Suppose x is a nonzero real number such that both x^{5} and $20 x+\frac{19}{x}$ are rational numbers. Prove that x is a rational number.
2. Let $A B C$ be a triangle with circumcircle Ω and let G be the centroid of triangle $A B C$. Extend $A G$, $B G$ and $C G$ to meet the circle Ω again in A_{1}, B_{1} and C_{1}, respectively. Suppose $\angle B A C=\angle A_{1} B_{1} C_{1}$, $\angle A B C=\angle A_{1} C_{1} B_{1}$ and $\angle A C B=\angle B_{1} A_{1} C_{1}$. Prove that $A B C$ and $A_{1} B_{1} C_{1}$ are equilateral triangles.
3. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$
\frac{a}{a^{2}+b^{3}+c^{3}}+\frac{b}{b^{2}+c^{3}+a^{3}}+\frac{c}{c^{2}+a^{3}+b^{3}} \leq \frac{1}{5 a b c}
$$

4. Consider the following 3×2 array formed by using the numbers $1,2,3,4,5,6$:

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)=\left(\begin{array}{ll}
1 & 6 \\
2 & 5 \\
3 & 4
\end{array}\right) .
$$

Observe that all row sums are equal, but the sum of the squares is not the same for each row. Extend the above array to a $3 \times k$ array $\left(a_{i j}\right)_{3 \times k}$ for a suitable k, adding more columns, using the numbers $7,8,9, \ldots, 3 k$ such that

$$
\sum_{j=1}^{k} a_{1 j}=\sum_{j=1}^{k} a_{2 j}=\sum_{j=1}^{k} a_{3 j} \quad \text { and } \quad \sum_{j=1}^{k}\left(a_{1 j}\right)^{2}=\sum_{j=1}^{k}\left(a_{2 j}\right)^{2}=\sum_{j=1}^{k}\left(a_{3 j}\right)^{2}
$$

5. In an acute angled triangle $A B C$, let H be the orthocenter, and let D, E, F be the feet of altitudes from A, B, C to the opposite sides, respectively. Let L, M, N be midpoints of segments $A H, E F, B C$, respectively. Let X, Y be feet of altitudes from L, N on to the line $D F$. Prove that $X M$ is perpendicular to $M Y$.
6. Suppose 91 distinct positive integers greater than 1 are given such that there are at least 456 pairs among them which are relatively prime. Show that one can find four integers a, b, c, d among them such that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)=\operatorname{gcd}(c, d)=\operatorname{gcd}(d, a)=1$.
