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Problems and brief solutions

1. Let ABC be a non-equilateral triangle with integer sides. Let D and E be respectively
the mid-points BC and CA; let G be the centroid of triangle ABC. Suppose D,C,E,G
are concyclic. Find the least possible perimeter of triangle ABC.

Solution: Let mb = BE. Then BG = 2mb/3. Since D,C,E,G are concyclic, we
know that BD ·BC = BG ·BE. This along with Appolonius’ theorem gives

a2 + b2 = 2c2

Since a, b are integers, this implies that a, b must have same parity. This gives(
a− b

2

)2

+

(
a+ b

2

)2

= c2.

Thus
(

(a−b)/2, (a+b)/2, c
)

is a Pythagorean triplet. Consider the first triplet (3, 4, 5).

This gives a = 7, b = 1 and c = 5. But a, b, c are not the sides of a triangle. The next
triple is (5, 12, 13). We obtain a = 17, b = 7 and c = 13. In this case we get a triangle
and its perimeter is 17 + 7 + 13 = 37. Since 2c < a+ b+ c < 3c, it is sufficient to verify
up to c = 19.

2. For any natural number n, consider a 1 × n rectangular board made up of n unit
squares. This is covered by three types of tiles: 1×1 red tile, 1×1 green tile and 1×2
blue domino. Let tn denote the number of ways of covering 1 × n rectangular board
by these three types of tiles. Prove that tn divides t2n+1.

Solution: Consider a 1× (2n+ 1) board and imagine the board to be placed horizon-
tally. Let us label the squares of the board as

C−n, C−(n−1), . . . , C−2, C−1, C0, C1, C2, . . . , Cn−1, Cn

from left to right. The 1 × 1 tiles will be referred to as tiles, and the blue 1 × 2 tile
will be referred to as a domino.

Let us consider the different ways in which the centre square C0 can be covered. There
are four distinct ways in which this can be done:

(a) There is a blue domino covering the squares C−1, C0. In this case, there is a
1 × (n − 1) board remaining on the left of this domino which can be covered in
tn−1 ways, and there is a 1×n board remaining on the right of the domino which
can be covered in tn ways.

(b) There is a blue domino covering the squares C0, C1. In this case, there is a 1× n
board remaining on the left of this domino which can be covered in tn ways, and
there is a 1 × (n − 1) board remaining on the right of the domino which can be
covered in t(n− 1) ways.



(c) There is a red tile covering the square C0. In this case, there is a 1 × n board
remaining on both sides of this tile, each of which can be covered in tn ways.

(d) There is a green tile covering the square C0. In this case, there is a 1× n board
remaining on both sides of this tile, each of which can be covered in tn ways.

Putting all the possibilities mentioned above together, we get that

t2n+1 = 2tn−1tn + 2t2n = tn(2tn−1 + 2tn)

which implies that tn divides t2n+1.

3. Let Γ1 and Γ2 be two circles with respective centres O1 and O2 intersecting in two
distinct points A and B such that ∠O1AO2 is an obtuse angle. Let the circumcircle of
triangle O1AO2 intersect Γ1 and Γ2 respectively in points C and D. Let the line CB
intersect Γ2 in E; let the line DB intersect Γ1 in F . Prove that the points C,D,E, F
are concyclic.

Solution: We will first prove that C,B,O2, E are collinear; and this line is the bisector
of ∠ACD:
Let ∠ABO2 = x. Then by angle-chasing based on the given circles, we get

∠AO2B = (180− 2x).

Hence ∠AO2O1 = (90 − x). Since A,O1, C,O2 are concyclic, we obtain ∠AO2O1 =
∠ACO1 = (90 − x). Therefore ∠AO1C = 2x. From this, we get ∠AFC = x and
∠ABC = 180−x. Thus, ∠ABC and ∠ABO2 are supplementary, implying C,B,O2, E
are collinear. Finally, we note that O2A = O2D implies that O2 is the midpoint of arc
AO2D; hence CO2 is the bisector of ∠ACD, as required.



Similarly we obtain that D,B,O1, F are collinear.

Hence, BE and BF are diameters of the respective circles. This shows that ∠BAE =
∠BAF = 90◦; and hence F,A,E are collinear.

Finally, using all the above properties, we get:

∠ECD = ∠BCD = ∠ACB = ∠AFB = ∠EFD.

Therefore C,D,E, F are concyclic, as required.

4. Find all polynomials with real coefficients P (x) such that P (x2+x+1) divides P (x3−1).

Solution: We show that P (x) = axn for some real number a and positive integer
n. We prove that the only root of P (x) = 0 is 0. Suppose there is a root α1 with
|α1| > 0. Let β1 and β2 be the roots of x2 + x + 1 = α1. Then β1 + β2 = −1. The
given hypothesis shows that

P (β3
1 − 1) = 0, P (β3

2 − 1) = 0.

We also see that
β3
1 − 1 + β3

2 − 1 = α1(β1 + β2 − 2).

Thus we have

|β3
1 − 1|+ |β3

2 − 1| ≥ |β3
1 − 1 + β3

2 − 1| = |α1||β1 + β2 − 2| = 3|α1|.

This shows that the absolute value of at least one of β3
1 − 1 and β3

2 − 1 is not less than
3|α1|/2. If we take this as α2, we have

|α2| > |α1|.

Now α2 is a root of P (x) = 0 and we repeat the argument with α2 in place of α1.
We get an infinite sequence of distinct roots of P (x) = 0. This contradiction proves
P (x) = axn.

5. There are n ≥ 3 girls in a class sitting around a circular table, each having some apples
with her. Every time the teacher notices a girl having more apples than both of her
neighbors combined, the teacher takes away one apple from that girl and gives one
apple each to her neighbors. Prove that this process stops after a finite number of
steps. (Assume that the teacher has an abundant supply of apples.)

Solution: Let a1, a2, . . . , an denote the number of apples with these girls at any
given time, all taken in a circular way. Consider two quantities associated with this
distribution: s = a1 + a2 + · · ·+ an and t = a21 + a22 + · · ·+ a2n. Using Cauchy-Schwarz
inequality, we see that

nt = n(a21 + a22 + · · ·+ a2n) ≥ (a1 + a2 + · · ·+ an)2 = s2.

Therefore t ≥ s2/n at any stage of the above process. Whenever teacher makes a
move, s increases by 1. Suppose the girl with aj apples has more than the sum of her
neighbors. Then the change in t equals

(aj−1)2+(aj−1+1)2+(aj+1+1)2−a2j−a2j−1−a2j+1 = 2(aj+1+aj−1−aj)+3 ≤ 3+2(−1) = 1.



If s1 and t1 denote the corresponding sums after one move, we see that

s1 = s+ 1, t1 ≤ t+ 1.

Thus after teacher performs k moves, if the corresponding sums are tk and sk, we
obtain

t+ k ≥ tk ≥
s2k
n

=
(s+ k)2

n
.

This leads to a quadratic inequality in k:

k2 + k(2s− n) + (s2 − nt) ≤ 0.

Since this cannot hold for large k, we see that the process must stop at some stage.

6. Let N denote the set of all natural numbers and let f : N→ N be a function such that

(a) f(mn) = f(m)f(n) for all m,n in N;

(b) m+ n divides f(m) + f(n) for all m,n in N.

Prove that there exists an odd natural number k such that f(n) = nk for all n in N.

Solution: Taking m = n = 1 in (a), we get f(1) = 1. Observe f(2n) = f(2)f(n).
Hence 2n+1 divides f(2n)+f(1) = f(2)f(n)+1. This shows that gcd(f(2), 2n+1) = 1
for all n. This means f(2) = 2k for some natural number k. Since 3 = 1 + 2 divides
f(1)+f(2) = 1+2k, k is odd. Now take any arbitray power of 2, say 2m, and an arbitray
integer n. By (b), 2m+n divides f(2m)+f(n). But (a) gives f(2m) =

(
f(2)

)m
= 2km.

Thus 2m + n divides 2km + f(n). But

2km + f(n) =
(
2km + nk

)
+

(
f(n)− nk

)
= M

(
2m + n

)
+

(
f(n)− nk

)
,

since k is odd. It follows that 2m + n divides f(n) − nk. By Varying m over N, we
conclude that f(n)− nk = 0. Therefore f(n) = nk.
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