
Regional Mathematical Olympiad-2017

Solutions

1. Let AOB be a given angle less than 180◦ and let P be an interior point of the
angular region determined by ∠AOB. Show, with proof, how to construct,
using only ruler and compasses, a line segment CD passing through P such
that C lies on the ray OA and D lies on the ray OB, and CP : PD = 1 : 2.

Solution: Draw a line parallel to OA through P . Let it intersect OB in
M . Using compasses, draw an arc of a circle with centre M and radius MO
to cut OB in L, L 6= O. Again with L as centre and with the same radius
OM draw one more arc of a circle to cut OB in D, D 6= M . Join DP and
extend it to meet OA in C. Then CD is the required line segment such that
CP : PD = 1 : 2. This follows from similar triangles OCD and MPD.

2. Show that the equation

a3 +(a+1)3 +(a+2)3 +(a+3)3 +(a+4)3 +(a+5)3 +(a+6)3 = b4 +(b+1)4

has no solutions in integers a, b.

Solution: We use divisibility argument by 7. Observe that the remainders of
seven consecutive cubes modulo 7 are 0, 1, 1, 6, 1, 6, 6 in some (cyclic) order.
Hence the sum of seven consecutive cubes is 0 modulo 7. On the other hand
the remainders of two consecutive fourth powers modulo 7 is one of the sets
{0, 1}, {1, 2}, {2, 4}, {4, 4}. Hence the sum of two fourth powers is never
divisible by 7. It follows that the given equation has no solution in integers.



3. Let P (x) = x2 + 1
2x + b and Q(x) = x2 + cx + d be two polynomials with

real coefficients such that P (x)Q(x) = Q
(
P (x)

)
for all real x. Find all the

real roots of P
(
Q(x)

)
= 0.

Solution: Observe that

P (x)Q(x) = x4 +

(
c +

1

2

)
x3 +

(
b +

c

2
+ d

)
x2 +

(
d

2
+ bc

)
x + bd.

Similarly,

Q
(
P (x)

)
=

(
x2 +

1

2
x + b

)2

+ c

(
x2 +

1

2
x + b

)
+ d

= x4 + x3 +

(
2b +

1

4
+ c

)
x2 +

(
b +

c

2

)
x + b2 + bc + d.

Equating coefficients of corresponding powers of x, we obtain

c +
1

2
= 1, b +

c

2
+ d = 2b +

1

4
+ c,

d

2
+ bc = b +

c

2
, b2 + bc + d = bd.

Solving these, we obtain

c =
1

2
, d = 0, b =

−1

2
.

Thus the polynomials are

P (x) = x2 +
1

2
x− 1

2
, Q(x) = x2 +

1

2
x.

Therefore,

P
(
Q(x)

)
=

(
x2 +

1

2
x

)2

+
1

2

(
x2 +

1

2
x

)
− 1

2

= x4 + x3 +
3

4
x2 +

1

4
x− 1

2
.

It is easy to see that

P (Q(−1)) = 0, P (Q(1/2)) = 0.

Thus (x + 1) and (x− 1/2) are factors of P (Q(x)). The remaining factor is

h(x) = x2 +
1

2
x + 1.

The discriminant of h(x) is D = (1/4)− 4 < 0. Hence h(x) = 0 has no real
roots. Therefore the only real roots of P (Q(x)) = 0 are −1 and 1/2.
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4. Consider n2 unit squares in the xy-plane centred at point (i, j) with integer
coordinates, 1 ≤ i ≤ n, 1 ≤ j ≤ n. It is required to colour each unit square
in such a way that whenever 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n, the three
squares with centres at (i, k), (j, k), (j, l) have distinct colours. What is the
least possible number of colours needed?

Solution: We first show that at least 2n − 1 colours are needed. Observe
that squares with centres (i, 1) must all have diffrent colours for 1 ≤ i ≤ n;
let us call them C1, C2, . . . , Cn. Besides, the squares with centres (n, j), for
2 ≤ j ≤ n must have different colours and these must be different from
C1, C2, . . . , Cn. Thus we need at least n + (n − 1) = 2n − 1 colours. The
following diagram shows that 2n− 1 colours will suffice.

5. Let Ω be a circle with a chord AB which is not a diameter. Let Γ1 be a
circle on one side of AB such that it is tangent to AB at C and internally
tangent to Ω at D. Likewise, let Γ2 be a circle on the other side of AB such
that it is tangent to AB at E and internally tangent to Ω at F . Suppose
the line DC intersects Ω at X 6= D and the line FE intersects Ω at Y 6= F .
Prove that XY is a diameter of Ω.

Solution: Draw the tangent PQ at D such that D is between P and Q.
Join D to A, B and C. Let L = DA ∩ Γ1 and M = DB ∩ Γ1. Join C to L
and M . Observe that

∠ADP = ∠LMD = ∠ABD. (1)

Therefore LM is parallel to AB and hence ∠LMC = ∠MCB (alternate
angles). Again observe that

∠ADC = ∠LDC = ∠LMC = ∠MCB = ∠MDC = ∠BDC. (2)
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Thus CD bisects ∠ADB. Hence X is the midpoint of the arc AB not
containing D. Similarly Y is the midpoint of the arc AB not containing F .
Thus the arc XY is half of the sum of two arcs that together constitute the
circumference of Ω and hence it is a diameter.

6. Let x, y, z be real numbers, each greater than 1. Prove that

x + 1

y + 1
+

y + 1

z + 1
+

z + 1

x + 1
≤ x− 1

y − 1
+

y − 1

z − 1
+

z − 1

x− 1
.

Solution: We may assume that x = max{x, y, z}. There are two cases: x ≥ y ≥ z
and x ≥ z ≥ y. We consider both these cases. The inequality is equivalent to{

x− 1

y − 1
− x + 1

y + 1

}
+

{
y − 1

z − 1
− y + 1

z + 1

}
+

{
z − 1

x− 1
− z + 1

x + 1

}
≥ 0.

This is further equivalent to

x− y

y2 − 1
+

y − z

z2 − 1
+

z − x

x2 − 1
≥ 0.

Suppose x ≥ y ≥ z. We write

x− y

y2 − 1
+

y − z

z2 − 1
+

z − x

x2 − 1
=

x− y

y2 − 1
+

y − z

z2 − 1
+

z − y + y − x

x2 − 1
.

This reduces to

(x− y)
(x2 − y2)

(x2 − 1)(y2 − 1)
+ (y − z)

(x2 − z2)

(x2 − 1)(z2 − 1)
.
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Since x ≥ y and x ≥ z, this sum is nonnegative.

Suppose x ≥ z ≥ y. We write

x− y

y2 − 1
+

y − z

z2 − 1
+

z − x

x2 − 1
=

x− z + z − y

y2 − 1
+

y − z

z2 − 1
+

z − x

x2 − 1
.

This reduces to

(x− z)
(x2 − y2)

(x2 − 1)(y2 − 1)
+ (z − y)

(z2 − y2)

(y2 − 1)(z2 − 1)
.

Since x ≥ z and z ≥ y, this sum is nonnegative.

Thus
x− y

y2 − 1
+

y − z

z2 − 1
+

z − x

x2 − 1
≥ 0

in both the cases. This completes the proof.

———-0———-
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