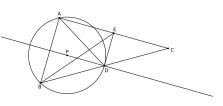
1. Let ABC be a triangle and D be the mid-point of BC. Suppose the angle bisector of $\angle ADC$ is tangent to the circumcircle of triangle ABD at D. Prove that $\angle A = 90^{\circ}$.

Solution: Let P be the center of the circumcircle Γ of $\triangle ABC$. Let the tangent at D to Γ intersect AC in E. Then $PD \perp DE$. Since DE bisects $\angle ADC$, this implies that DP bisects $\angle ADB$. Hence the circumcenter and the incenter of $\triangle ABD$ lies on the same line DP. This implies that DA = DB. Thus DA = DB = DC and hence D is the circumcenter of $\triangle ABC$. This gives $\triangle A = 90^{\circ}$.



2. Let a, b, c be positive real numbers such that abc = 1 Prove that

$$\frac{a^3}{(a-b)(a-c)} + \frac{b^3}{(b-c)(b-a)} + \frac{c^3}{(c-a)(c-b)} \ge 3.$$

Solution: Observe that

$$\frac{1}{(a-b)(a-c)} = \frac{(b-c)}{(a-b)(b-c)(a-c)}$$

$$= \frac{(a-c) - (a-b)}{(a-b)(b-c)(a-c)} = \frac{1}{(a-b)(b-c)} - \frac{1}{(b-c)(a-c)}.$$

Hence

$$\frac{a^3}{(a-b)(a-c)} + \frac{b^3}{(b-c)(b-a)} + \frac{c^3}{(c-a)(c-b)} = \frac{a^3 - b^3}{(a-b)(b-c)} + \frac{c^3 - a^3}{(c-a)(c-b)}$$

$$= \frac{a^2 + ab + b^2}{b-c} - \frac{c^2 + ca + a^2}{b-c}$$

$$= \frac{ab + b^2 - c^2 - ca}{b-c}$$

$$= \frac{(a+b+c)(b-c)}{b-c} = a+b+c.$$

Therefore

$$\frac{a^3}{(a-b)(a-c)} + \frac{b^3}{(b-c)(b-a)} + \frac{c^3}{(c-a)(c-b)} = a+b+c \ge 3(abc)^{1/3} = 3.$$

3. Let a, b, c, d, e, f be positive integers such that

$$\frac{a}{b} < \frac{c}{d} < \frac{e}{f}.$$

Suppose af - be = -1. Show that $d \ge b + f$.

Solution: Since bc - ad > 0, we have $bc - ad \ge 1$. Similarly, we obtain $de - fc \ge 1$. Therefore

$$d = d(be - af) = dbe - daf = dbe - bfc + bfc - adf = b(de - fc) + f(bc - ad) \ge b + f.$$

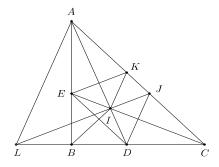
4. There are 100 countries participating in an olympiad. Suppose n is a positive integer such that each of the 100 countries is willing to communicate in exactly n languages. If each set of 20 countries can communicate in at least one common language, and no language is common to all 100 countries, what is the minimum possible value of n?

Solution: We show that n=20. We first show that n=20 is possible. Call the countries C_1, \dots, C_{100} . Let $1, 2, \dots, 21$ be languages and suppose, the country $C_i (1 \le i \le 20)$ communicates exactly in the languages $\{j: 1 \le j \le 20, j \ne i\}$. Suppose each of the countries C_{21}, \dots, C_{100} communicates in the languages $1, 2, \dots, 20$. Then, clearly every set of 20 countries have a common language of communication.

Now, we show that $n \geq 20$. If n < 20, look at any country A communicating in the languages L_1, \dots, L_n . As no language is common to all 100 countries, for each L_i , there is a country A_i not communicating in L_i . Then, the $n+1 \leq 20$ countries A, A_1, A_2, \dots, A_n have no common language of communication. This contradiction shows $n \geq 20$.

5. Let ABC be a right-angled triangle with $\angle B = 90^{\circ}$. Let I be the incentre of ABC. Extend AI and CI; let them intersect BC in D and AB in E respectively. Draw a line perpendicular to AI at I to meet AC in I; draw a line perpendicular to CI at I to meet AC in K. Suppose DI = EK. Prove that BA = BC.

Solution: Extend JI to meet CB extended at L. Then ALBI is a cyclic quadrilateral. Therefore $\angle BLI = \angle BAI = \angle IAC$. Therefore $\angle LAD = \angle IBD = 45^{\circ}$. Since $\angle AIL =$ 90°, it follows that $\angle ALI = 45$ °. Therefore AI = IL. This shows that the triangles AIJand LID are congruent giving IJ = ID. Similarly, IK = IE. Since $IJ \perp ID$ and $IK \perp IE$ and since DJ = EK, we see that IJ = ID =IK = IE. Thus E, D, J, K are concyclic. This implies together with DJ = EK that EDJK is an isosceles trapezium. Therefore $DE \parallel JK$. Hence $\angle EDA = \angle DAC = \angle A/2$ and $\angle DEC = \angle ECA = \angle C/2$. Since IE =ID, it follows that $\angle A/2 = \angle C/2$. This means BA = BC.



- 6. (a) Given any natural number $N \geq 3$, prove that there exists a strictly increasing sequence of N positive integers in harmonic progression.
 - (b) Prove that there cannot exist a strictly increasing infinite sequence of positive integers which is in harmonic progression.

Solution: (a) Let $N \geq 3$ be a given positive integer. Consider the HP

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{N}.$$

If we multiply this by N!, we get the HP

$$N!, \frac{N!}{2}, \frac{N!}{3}, \frac{N!}{4}, \dots, \frac{N!}{N}.$$

This is decreasing. We write this in reverse order to get a strictly increasing HP:

$$\frac{N!}{N}, \frac{N!}{N-1}, \frac{N!}{N-2}, \dots, \frac{N!}{3}, \frac{N!}{2}, N!.$$

(b) Assume the contrary that there is an infinite strictly increasing sequence $\langle a_1, a_2, a_3, \ldots, \rangle$ of positive integers which forms a harmonic progression. Define $b_k = 1/a_k$, for $k \ge 1$. Then $\langle b_1, b_2, b_3, \ldots \rangle$ is a strictly decreasing sequence of positive rational numbers which is in an arithmetic progression.

Let $d = b_2 - b_1 < 0$ be its common difference. Then $b_1 - b_2 > 0$. Choose a positive integer n such that

$$n > \frac{b_1}{b_1 - b_2}.$$

Then

$$b_{n+1} = b_1 + (b_2 - b_1)n = b_1 - (b_1 - b_2)n < b_1 - \left(\frac{b_1}{b_1 - b_2}\right) \times (b_1 - b_2) = 0.$$

Thus for all large n, we see that b_n is negative contradicting b_n is positive for all n.

