
1. Let ABC be a right-angled triangle with ∠B = 90◦. Let I be the incentre of ABC. Let AI extended
intersect BC in F . Draw a line perpendicular to AI at I. Let it intersect AC in E. Prove that
IE = IF .

Solution: Extend EI to meet CB extended in D.
First observe that ADBI is a cyclic quadrilateral
since ∠AID = ∠ABD. Hence ∠ADI = ∠ABI =
45◦. Hence ∠DAI = 45◦. Therefore IA = ID.

Consider the triangles AIE and DIF . Both are
right triangles. Moreover ∠IAE = ∠IAB = ∠IDB.
Since IA = ID, the triangles are congruent. This
means IE = IF .

2. Let a, b, c be positive real numbers such that

a

1 + b
+

b

1 + c
+

c

1 + a
= 1.

Prove that abc ≤ 1/8.

Solution: This is equivalent to∑
a(1 + c)(1 + a) = (1 + a)(1 + b)(1 + c).

This simplifies to ∑
a2 +

∑
a2c = 1 + abc

Using AM-GM inequality, we have

1 + abc =
∑

a2 +
∑

a2c ≥ 3(abc)2/3 + 3abc.

Let x = (abc)1/3. Then
3x2 + 2x3 ≤ 1.

This can be written as (x + 1)2(2x− 1) ≤ 0. Hence x ≤ 1/2. Thus

abc ≤ 1

8
.

3. For any natural number n, expressed in base 10, let S(n) denote the sum of all digits of n. Find
all natural numbers n such that n3 = 8S(n)3 + 6nS(n) + 1.

Solution: We write the given condition as

n3 + (−2S(n))3 + (−1)3 = 3× n× (−2S(n))× (−1).

This is in the form x3 + y3 + z3 = 3xyz. We know that this can happen if and only if x+ y+ z = 0.
Thus we obtain a simpler condition

n− 2S(n)− 1 = 0.

Again we know that n − S(n) is divisible by 9. Hence 9 should divide S(n) + 1. It is easy to see
that the number of digits in n cannot be more than 2. For a three digit number maximum value
of S(n) can be 27 and 2S(n) + 1 ≤ 55.. Hence n is either a 1-digit number or a two digit number.
Hence S(n) ≤ 18. Since 9 divides S(n) + 1, we can have S(n) = 8 or S(n) = 17. But then n = 17
or n = 35. Among these n = 17 works but not 35. (S(35) = 8 and 2S(n) + 1 = 17 6= 35.) Hence
the only solution is n = 17.



4. How many 6-digit natural numbers containing only the digits 1, 2, 3 are there in which 3 occurs
exactly twice and the number is divisible by 9?

Solution:

Let S(n) be the sum of the digits of n. Then n ≡ S(n) (mod 9). For any admissible n we observe
that 10 ≤ S(n) ≤ 14 and hence there is no value of S(n) that is a multiple of 9. Thus no such n
exists.

5. Let ABC be a right-angled triangle with ∠B = 90◦. Let AD be the bisector of ∠A with D on BC.
Let the circumcircle of triangle ACD intersect AB again in E; and let the circumcircle of triangle
ABD intersect AC again in F . Let K be the reflection of E in the line BC. Prove that FK = BC.

Solution: First we show that EB = FC. Con-
sider the triangles EBD and CFD. Observe that
∠CFD = 90◦ since ∠AFD = 90◦ (angle in a semi-
circle). Hence ∠CFD = ∠EBD. Since ACDE is a
cyclic quadrilateral, we have ∠CDE = 180◦ − ∠A.
Similarly, we see that AFDB is a cyclic quadrilateral
and therefore ∠FDB = 180◦ −∠A. Thus we obtain
∠CDE = ∠FDB. This gives ∠FDC = ∠BDE. It
follows 4EBD ∼ 4CFD.

Since AD bisects ∠A, we have DB = DF . Hence 4EBD ∼= 4CFD. Hence FC = EB = BK. We
also observe that AF = AB since 4ABD ∼= 4AFD. It follows that FB ‖ CK. Since FC = BK,
we conclude that CKDF is an siosceles trapezium. This gives FK = BC.

Alternate solution: First we show that K,D,F are collinear. Observe that ∠FDB = 180◦−∠A
by the concyclicity of AFDB. Moreover ∠BDK = ∠BDE = ∠A. Therefore ∠KDF = 180◦. This
proves that KDF is a line segment.

Consider the triangles AKF and ABC. Since both are right-angled triangles and ∠A is common,
they are similar. We also see that 4AFD ∼= 4ABD since ∠AFD = ∠ABD = 90◦, ∠FAD =
∠BAD = ∠A/2 and AD common. Hence AF = AB. This implies now that 4AFK ∼= 4ABC.
Hence KF = BC.

6. Show that the infinite arithmetic progression 〈1, 4, 7, 10, . . .〉 has infinitely many 3-term subsequences
in harmonic progression such that for any two such triples 〈a1, a2, a3〉 and 〈b1, b2, b3〉 in harmonic
progression, one has

a1
b1
6= a2

b2

(
a2
b2
6= a3

b3

)
.

Solution: Consider 〈4, 7, 28〉. We observe that

1

4
+

1

28
=

2

7
.

Thus we look for the terms of the form a, b, ab which give a HP. The condition is

1

a
+

1

ab
=

2

b
.

This reduces to b(1 + b) = 2ab or 2a = 1 + b. The terms of the given AP are of the form 3k + 1. If
we take a = 3k + 1, then b = 2a − 1 = 6k + 1. We observe that b is also a term of the gven AP.
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Besides, ab = (3k + 1)(6k + 1) = 3(6k2 + 3k) + 1 is again a term of the given AP. Thus the triple
of the form 〈3k + 1, 6k + 1, (3k + 1)(6k + 1)〉 form a HP. We observe that

3k + 1

3l + 1
6= 6k + 1

6l + 1
6= (3k + 1)(6k + 1)

(3l + 1)(6l + 1)
.
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