The INChO Examination Board when it met in March 2009 reconsidered the solutions to INChO 2009. The answer key to Q.No 7.8 was revised and the answer scripts of **all** students were reassessed for this question. In light of the above, all students whose marks have changed are being sent fresh performance cards. The OCSC list for chemistry which is displayed on the website has been prepared taking into account this change of marks.

Equivalent Solutions may exist.

Problem 1

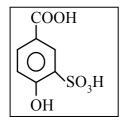
Hydrogen atom

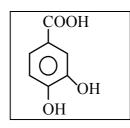
- 1.1 $-5.45 \times 10^{-19} \text{ J}$
- 1.2 10.2 eV
- 1.3
- 1.4 2
- **1.5** Ans: 16
- 1.6 Ground state energy = -13.6 eVK.E = +13.6 eVP.E = -27.2 eV
- **1.7** a) Ans: 4
 - b) 2
- **1.8** 79.0 eV

Nitrogen containing compounds

2.1 ii) + C_3H

2.2 ii) (F)

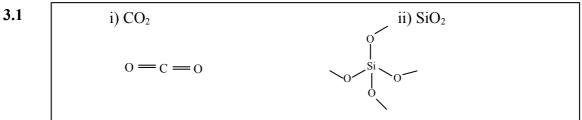

2.3 a) CH₃COCHN₂


b) or Nl.

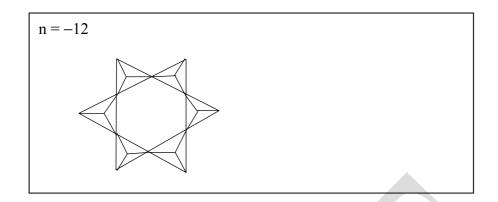
 OH OH CH2-C

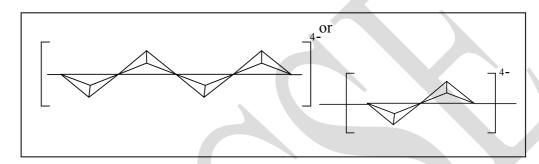
2.5 i) **D** is more basic than **E**

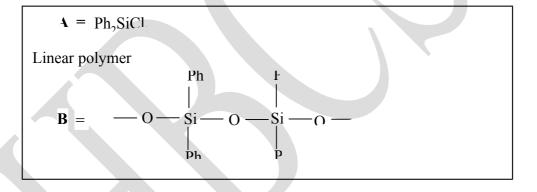
2.6 H


2.9 i)

2.10


2.11


Problem 3

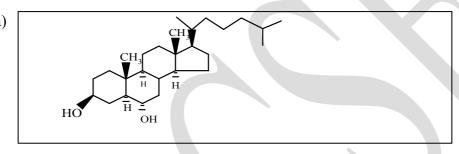

Chemistry of silicon

- 3.2. b) carbon has small size and forms a π bond with good overlap whereas silicon has larger size hence has a poor π overlap
- b) silicon has larger atomic size than carbon 3.3
 - c) silicon has 3d orbitals which form an sp³d² hybrid orbitals
- 3.4 C > Si > Ge
- 3.5 c) bond strength
- 3.6 Si + 2CO $SiO_2 + 2C$
- 3.7 $Si + 2Cl_2$ SiCl₄ Si + 4HCl $SiCl_4 + 2H_2$
- b) impurities are more soluble in liquid phase than in solid 3.8
- c) silicon has low lying unoccupied orbitals 3.9

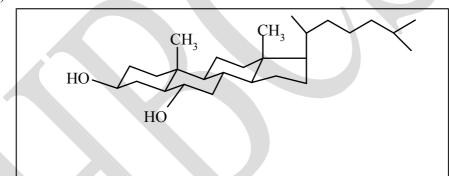
Natural compounds and intermediates

4.1 b) 256

4.2

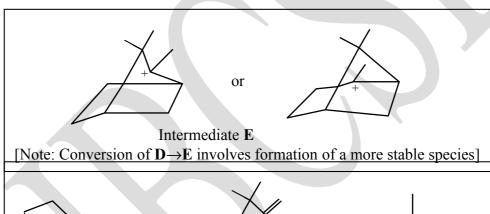

$$H_{3}C-(CH_{2})_{10}$$

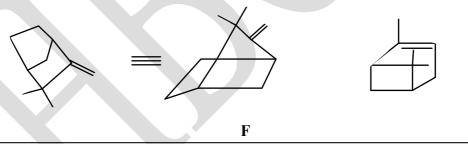
$$C = C$$

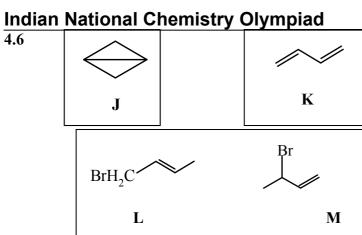

$$(CH_{2})_{2} - C = O$$

$$(CH_{2})_{2} - C = O$$

4.3

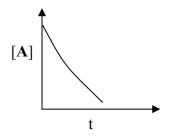

b)

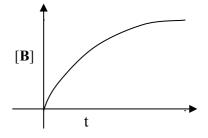




ii)

4.4 +OH₂ Intermediate **D**





Chemical kinetics

5.1

5.2

5.3

$$\frac{d[A]}{dt} = -k$$

b)

a)

$$[A] = [A]_0 - kt$$

c)

$$t_{0.5} = \frac{[A]_0}{2k}$$

5.4

b)

a)

5.5

a)

b)

$$2.3 \times 10^{-5} \text{ s}^{-1}$$

5.6

1

(i)
$$3.05 \times 10^{-7} \text{ mol}$$

ii)

$$6.3 \times 10^{16}$$

iii)

$$1.9 \times 10^{17}$$

iv)

$$6.2 x 10^{23} mol^{-1}$$

Problem 6

A. Kinetic theory of gases and Gas Laws

6.1. i) **Curve**

Temperature

Curve a

100K

Curve b

300K

Curve c

700 K

ii) True

6.2 Curve

Gas

Curve a

 H_{2}

Curve b

 $CH_{_{A}}$

Curve c

 NH_3

Curve d

Ar

6.3 iii) $H_2 < CH_4 < NH_3$

6.4

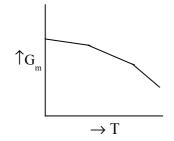
2 atm

6.5

134.7 J

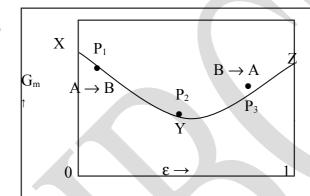
6.6

6.7%


B.

6.7

Solid/vapor


6.8

T=217 K and P=5.2 atm

- **6.10** a) All the three phases are in equilibrium
 - b) Molar Gibbs energy for the three phases is the same
- **6.11** a) increase
- 6.12 Single

6.13

Point P₁ is any point between X and Y Point P₃ is any point between

Point P₃ is any point between Y and Z

Point P₂ is point Y

6.14 a) K decreases as the temperature rises

Problem 7

Acid-Base chemistry

Part A

- 7.1
- a) B
- b) D
- c) F

7.2

4.4

7.3

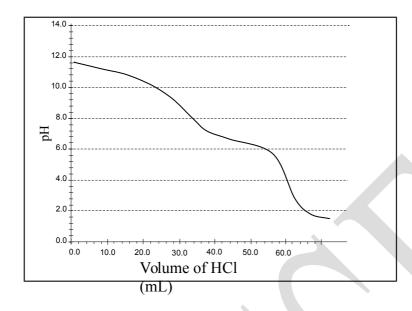
Methyl orange

Part B

7.4

 $CO_3^{2-} + H^+ \rightarrow HCO_3^ HCO_3^- + H^+ \rightarrow H_2CO_3 \quad \text{or } H_2O + CO_2$

7.5


a) 1.104 x 10⁻³ mol HCl

b) 3.944 x 10⁻³ mol HCl

7.6

46.8 % Na₂CO₃

29.1 % NaHCO₃

- 7.8 i) The total volume of HCl required to reach the 2nd end point is twice that of the first one
 - ii) Number of moles of CO₃²⁻ is equal to the number of moles of HCO₃⁻at some point on this curve
 - iii) Number of moles of HCO_3^- is equal to twice the number of moles of CO_3^{-2} at some point on this curve