31st राष्ट्रीय गणित ओलिंपियाड - 2016

समयः ४ घंटा जनवरी 17, 2016

निर्देश :

• किसी भी तरह के गणक (calculators) तथा चाँदा (protractors) के प्रयोग की अनुमित नहीं है.

- पैमाना (rulers) तथा परकार (compasses) के प्रयोग की अनुमित है.
- सभी प्रश्नों के उत्तर दीजिये.
- सभी प्रश्नों के अंक समान हैं. अधिकतम अंक = 100.
- प्रत्येक प्रश्न का उत्तर नए पेज से प्रारंभ कीजिये. प्रश्न क्रमांक स्पष्ट रूप से इंगित कीजिये.
- 1. मान लीजिये कि ABC त्रिभुज है जिसमें AB = AC. मान लीजिये कि त्रिभुज का लम्बकेंद्र अंतःवृत्त पर है. AB/BC का अनुपात ज्ञात कीजिये.
- 2. धनात्मक वास्तविक संख्याओं a, b, c के लिये निम्न में से किस कथन में a=b=c अनिवार्य रूप से निहित है: (I) $a(b^3+c^3)=b(c^3+a^3)=c(a^3+b^3)$,

(II)
$$a(a^3 + b^3) = b(b^3 + c^3) = c(c^3 + a^3)$$
? अपने उत्तर का उचित कारण बताइए.

- 3. मान लीजिये कि $\mathbb N$ सभी प्राकृत संख्याओं के समुच्चय को निर्दिष्ट करता है. T(2k) = k तथा T(2k+1) = 2k+2 के द्वारा एक फलन $T \colon \mathbb N \to \mathbb N$ परिभाषित किया गया है. लिखने का एक प्रकार $T^2(n) = T(T(n))$ है तथा सामान्य रूप में किसी k>1 के लिए $T^k(n) = T^{k-1}(T(n))$.
 - i) दिखाइये कि प्रत्येक $n \in \mathbb{N}$ के लिए k का आस्तित्व इस प्रकार है कि $T^k(n)=1$.
 - ii) $k \in \mathbb{N}$ के लिए मान लीजिये कि c_k , समुच्चय $\{n: T^k(n)=1\}$ के तत्वों की संख्या को इंगित करता है. सिद्ध कीजिये कि $k \ge 1$ के लिए, $c_{k+2} = c_{k+1} + c_k$.
- 4. मान लीजिये कि किसी वृत्त की परिधि के 2016 बिंदु लाल रंग के हैं और बाकि सभी बिंदु नीले रंग के. किसी प्राकृत संख्या $n \ge 3$ के लिए सिद्ध कीजिये कि एक n-भुजाओं वाला बहुभुज है जिसके सभी शीर्ष नीले रंग के हैं.
- 5. मान लीजिये कि ABC एक समकोण त्रिभुज है जिसमें $\angle B = 90^\circ$. मान लीजिये कि AC पर एक बिंदु D इस प्रकार है कि त्रिभुज ABD तथा CBD की अंतःत्रिज्याएं बराबर हैं. यदि यह उभयनिष्ठ मान (common value) r' है और r त्रिभुज ABC की अंतःत्रिज्या है तो सिद्ध कीजिये कि

$$\frac{1}{r'} = \frac{1}{r} + \frac{1}{BD}$$

6. एक असतत अंकगणितीय श्रेणी $a_1,a_2,\ldots,a_n,\ldots$ पर विचार कीजिये. मान लीजिये p>1 तथा q>1 धनात्मक असहभाज्य (relatively prime positive) पूर्णांक इस प्रकार हैं कि a_1^2 , a_{p+1}^2 तथा a_{q+1}^2 भी उसी अंकगणितीय श्रेणी के पद हैं. सिद्ध कीजिये कि अंकगणितीय श्रेणी के सभी पद पूर्णांक हैं.

-----000000-----