भारतीय खगोलीय ओलंपियाड क्वालीफायर (IOQA) 2020 – 2021

होमी भाभा विज्ञान शिक्षा केंद्र (HBCSE-TIFR) तथा इंडियन एसोसिएशन ऑफ फिजिक्स टीचर्स (IAPT) द्वारा संयुक्त रूप से आयोजित

भाग द्वितीय: भारतीय राष्ट्रीय खगोलीय ओलंपियाड (INAO)

होमी भाभा विज्ञान शिक्षा केंद्र (HBCSE-TIFR)

У	Ş	Ч	V	C	5	Γ

दिनांक: 6 फरवरी 2021	समय: 10:15 से 12:15 तक
अनुक्रमांक:	कुल प्राप्तांक: 80

सूचनाएं:

- अपना अनुक्रमांक इस पृष्ठ के उपरी हिस्से में दिये हुए बक्सों मे लिखे ।
- इस प्रश्नपत्रिका में कुल 5 प्रश्न हैं । हर एक प्रश्न / उप-प्रश्न के अधिकतम प्राप्तांक उसके सामने लिखे गये है ।
- सभी प्रश्नों के लिए, अंतिम उत्तर के बजाय समाधान पर पहुंचने में शामिल प्रक्रिया अधिक महत्वपूर्ण है। जरूरत होने पर आप उचित अभिधारणाओं / अनुमानों का प्रयोग कर सकते हैं। कृपया अपनी पद्धति स्पष्ट रूप से लिखें, स्पष्ट रूप से सभी तर्क बताएं।
- गैर-प्रोग्रामयोग्य वैज्ञानिक कैलकुलेटर के प्रयोग की अनुमित है।
- उत्तरपत्रिका परिवेक्षक को लौटायी जानी चाहिए । आप प्रश्नपत्रिका को वापस अपने साथ ले जा सकते हैं ।

उपयोगी स्थिरांक

सूर्य का द्रव्यमान	M_{\odot} \approx	$1.989 imes 10^{30}\mathrm{kg}$
पृथ्वी का द्रव्यमान	M_{\oplus} $pprox$	$5.972\times10^{24}kg$
चंद्र का द्रव्यमान	$M_{\mathbb{C}} \approx$	$7.347 imes 10^{22} kg$
पृथ्वी की त्रिज्या	R_{\oplus} \approx	6.371×10^6m
प्रकाश की गति	$c \approx$	$2.998 \times 10^8ms^{-1}$
सूर्य की त्रिज्या	R_{\odot} \approx	$6.955\times10^8\text{m}$
चंद्र की त्रिज्या	$R_m \approx$	$1.737\times 10^6\text{m}$
चंद्र की दूरी	$d_{\mathcal{C}} \approx$	3.844×10^8m
खगोलीय यूनिट	1 A. \dot{U} . \approx	$1.496\times10^{11}\text{m}$
गुरूत्वीय स्थिरांक	$G \approx$	$6.674\times 10^{-11}\text{Nm}^2/\text{kg}^2$

- 1. एक न्यूटोनियन परावर्ती प्रकार की दूर्बीन में मुख्य अवतल दर्पण की वक्रता त्रिज्या 2.00 m है। इस दूर्बीन के प्राथमिक फोकस पर एक कैमरा लगाया गया है जिस के लेंस की फोकल लेंथ 4.00 cm है।
 - (a) (2 marks) इस प्रणाली का कोणीय आवर्धन (angular magnification) कितना है?
 - (b) (3 marks) हम इस प्रणाली के साथ एक 25 000 km व्यास के सौरदाग़ की छवि बनाते हैं। छवि में सौरदाग़ (sunspot) का कोणीय आकार कितना होगा?
 - (c) (7 marks) कैमरा लेंस अब हटा दिया गया है और एक डिटेक्टर को इस तरह से रखा गया है कि प्राथमिक दर्पण उस सौरदाग़ की पीली रोशनी (तरंग दैर्ध्य / तरंग लंबाई 550 nm) में एक स्पष्ट छिव उस डिटेक्टर पर बनाता है। हम अब उसी सौरदाग़ के क्षेत्र को हरी रोशनी (तरंग दैर्ध्य / तरंग लंबाई 465 nm) में देखना चाहते हैं। इसके लिए, हम डिटेक्टर के सामने एक समतल कांच का हरा फिल्टर लगाते हैं, जो हरी रोशनी को छोड़कर अन्य सभी तरंग दैर्ध्य / तरंग लंबाई को अवरुद्ध करता है। यदि इस समतल कांच की प्लेट (अपवर्तक सूचकांक 1.53) की मोटाई $t=2.887\,\mathrm{mm}$ है, तो छिव की प्राथमिक दर्पण से दूरी में कितना बदलाव आयेगा?
- 2. एक सिलेंडर बनाने के लिए एक आयताकार काग़ज को रोल किया गया, जिसमें घुमावदार सतह के साथ काग़ज की दो परतें थीं। यह सिलेंडर इस तरह से काटा गया कि कट की दिशा सिलेंडर की धुरी के साथ 45° का कोण बनाती है। उसके बाद काग़ज को खोलकर एक सपाट मेज पर फैला दिया गया।
 - (a) (2 marks) अब काग़ज कैसा दिखाई देगा यह दिखाने के लिए एक चित्र बनाएं।
 - (b) (4 marks) उचित गणितीय तर्कों के साथ अपने उत्तर का पुष्टीकरण करें।
- 3. मृग नक्षत्र (Orion Constellation) में स्थित बेटेलज्यूज़ (काक्षी) नामक लाल अतिविशाल तारा एक अनियमित चर (irregular variable) तारे के रूप में जाना जाता है। इसकी तेजस्विता अनिश्चित तरीके से + 0.3 से + 1.0 के बीच बदलती रहती है। हालांकि, पिछले साल बेटेलज्यूज़ के अप्रत्याशित रूप से मंद होने पर खगोलविद आश्चर्यचिकत थे। हम मान सकते हैं कि यह घटना 12 अक्टूबर 2019 से शुरू हुई थी। नीचे दिया गया आलेख (ग्राफ) बेटेलज्यूज़ के समयानुसार तेजस्विता परिमाण (प्रकाश-वक्र) को दर्शाता है। ध्यान दें:
 - तारे का तेजस्विता परिमाण और उससे प्राप्त प्रकाश की दीप्ति के बीच का संबंध इस तरह दर्शाया जा सकता है:

$$m_1 - m_2 = -2.5 \log_{10} \left(\frac{F_1}{F_2} \right)$$

जहां दो अलग-अलग प्रेक्षणों में m_1 और m_2 तेजस्विता परिमाण है और F_1 और F_2 प्रकाश दीप्ति हैं।

- बेटेलज्यूज का द्रव्यमान: $M_B = 2.1 imes 10^{31}\,{
 m kg}$
- पृथ्वी से बेटेलज्यूज़ की दूरी: $d_B = 200 \, \mathrm{pc}$
- बेटेलज्यूज़ की त्रिज्या : $R_1 = 6.17 \times 10^{11} \, \mathrm{m}$
- (a) (8 marks) तारे के इस तरह मंद होने का एक प्रस्तावित मॉडल यह था कि पूरे तारे ने अचानक विस्तृत होना (expansion) शुरू किया और इसलिए उसका तापमान घट गया। हम यह मान लेते हैं कि तारा अपने विस्तारण (और बाद के संकुचन) के प्रत्येक चरण में आदर्श कृष्ण पिंड (ideal black body) के रूप में कार्य कर रहा है। अन्य मापों से, हम जानते हैं कि विस्तारण की शुरूआत में तारे का प्रभावी तापमान $T_1 = 3500 \, \mathrm{K}$ था और सबसे विस्तृत होने पर प्रभावी तापमान $T_2 = 2625 \, \mathrm{K}$ था। तारे के विस्तार का औसत वेग ज्ञात कीजिए।

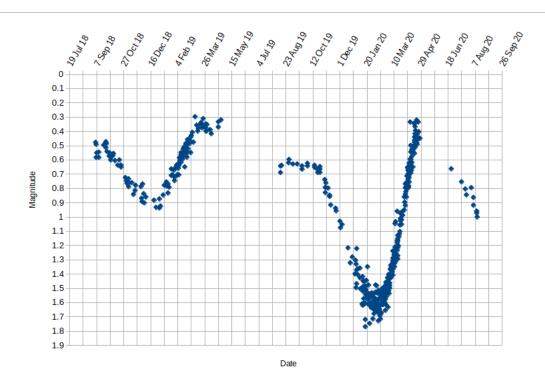


Figure 1: The V band magnitudes are observations from the AAVSO International Database (https://www.aavso.org)

- (b) (9 marks) कुछ अन्य खगोलविदों ने प्रस्तावित किया था कि उक्त तारे का मिद्धम होना, एक विशाल ग्रह (ग्रहीय त्रिज्या, r) के बेटेलज्यूज़ की परिक्रमा के बीच बेटेलज्यूज़ को ग्रहण लगाने से हुआ है। मान लें की यह ग्रह बेटेलज्यूज़ की परिक्रमा वृत्ताकार कक्षा (कक्षीय त्रिज्या, a) में करता है और यह कक्षा अपने परिदृश्य के प्रतल (edge-on orbit) में है। चर्चा करें कि क्या यह प्रस्तावना संभव है?
- (c) (7 marks) इस बेटेलज्यूज़ के मिद्धिम होने को समझने के लिए सुझाए गये एक लोकप्रिय मॉडल में कहा गया है कि यह घटना सितारे की सतह से अत्याधिक मात्रा में गर्म द्रव्य बाहर फेंके जाने के साथ शुरू हुई। यह द्रव्य निकलने के बाद ठंडा और अपारदर्शी हो गया और तारे के एक हिस्से से आनेवाले प्रकाश को अवरुद्ध करने लगा। जैसे-जैसे इस घने बादल का विस्तारण होता गया, यह तारे का अधिक से अधिक भाग अवरुद्ध करता रहा। हालांकि, जैसे-जैसे इस विस्तारण ने इस बादल का घनत्व कम किया, कुछ हफ्तों के बाद बादल की अपारदर्शिता कम होने लगी और तारे की चमक फिर से बढ़ने लगी।

यहां हम इस मॉडल के एक सरल संस्करण पर विचार करेंगे। हम मानेंगे कि यह तारा अपनी धुरी पर नहीं घूम रहा है और इस द्रव्य का उत्सर्जन तारे की सतह पर एक बिंदु से बहुत कम समय में एक संकीर्ण शंकु के आकार में हुआ। उत्सर्जित द्रव्य का कुल द्रव्यमान पृथ्वी के द्रव्यमान के लगभग बराबर था और शंकु की धुरी बिल्कुल हमारी दृष्टि रेखा के तरफ़ थी। हम यह मान लेते हैं कि विस्तारण के दौरान प्रत्येक समय पर शंकु में तात्कालिक घनत्व एकसमान (uniform density throughout the cone) होता है और शंकु का शीर्ष बिंदू हमेशा तारे की सतह पर ही रहता है।

हम मानते हैं कि जब शंकु के अंदर औसत घनत्व $5 \times 10^{-14} \, \mathrm{kg \, m^{-3}}$ हो जाता है तो तारे की चमक फिर से बढ़ने लगती है। शंकू के धरातल / सामनेवाली सतह के द्रव्य का औसत (time average) वेग ज्ञात कीजिए।

- 4. (20 marks) एक अंतरिक्ष एजेंसी क्रांतिवृत्त के प्रतल (यानि पृथ्वी की कक्षा का प्रतल) में एक कृत्रिम उपग्रह को पृथ्वी के चारों ओर अत्यधिक अण्डाकार कक्षा में रखना चाहती है। ऐसी कक्षा के लिए अधिकतम उत्केंद्रता (maximum eccentricity, $e_{\rm max}$) कितनी हो सकती है? इस कक्षा के लिए पृथ्वी के केंद्र से उपभू (perigee, $r_{\rm min}$) और अपभू (apogee, $r_{\rm max}$) की दूरी (किलोमीटर में) प्रदान करें।
- 5. (18 marks) भारत के विभिन्न शहरों के रहने वाले पांच दोस्तों ने सूर्य का प्रेक्षण किया और निम्नलिखित कथन दिए। छाया की लंबाई के अपने अपने स्थान पर प्रेक्षण के लिए, वे सभी एक सपाट जमीन पर लंबवत रूप से रखी गई एक मीटर छडी का उपयोग कर रहे थे।
 - 1. मैंने 12 जून को सुबह 04:56 पर सूर्योदय देखा ।
 - 2. मैंने 12 जून को सुबह 05:24 पर सूर्योदय देखा, जो उस दिन पांच शहरों में से दूसरा सबसे शीघ्र होने वाला सूर्योदय था।
 - 3. मैंने 24 दिसंबर को 16:55 पर सूर्यास्त देखा।
 - 4. मैंने 24 दिसंबर को 17:35 पर सूर्यास्त देखा, जो उस दिन पांच शहरों में से तीसरा सबसे शीघ्र होने वाला सूर्यास्त था।
 - 5. मैंने 1 सितंबर को 18:50 पर सूर्यास्त देखा, जो उस दिन पांच शहरों में से आखिरी सूर्यास्त था।
 - 6. 21 जून को हर एक के स्थानीय समय अनुसार ठीक 12 बजे देखा जाए तो मेरे स्थान पर छाया सभी के बीच सबसे लंबी थी।
 - 7. मेरे स्थान पर वर्ष की सबसे छोटी छाया 21 जून को देखी गई।
 - 8. मेरे स्थान पर वर्ष की सबसे छोटी छाया 5 जून को देखी गई।
 - 9. मेरे स्थान पर वर्ष की सबसे छोटी छाया 26 मई को देखी गई।
 - 10. मेरे स्थान पर वर्ष की सबसे छोटी छाया 15 अप्रेल को देखी गई।
 - 11. मेरे दोस्तों की तुलना में 1 जुलाई को मेरा दिन सबसे लंबा था।
 - 12. मेरे दोस्तों की तुलना में 1 फरवरी को मेरा दिन सबसे लंबा था।

यहां हमारे पर्यवेक्षकों के स्थानों के साथ उनके शहरों के निर्देशांक दिये गये हैं:

पर्यवेक्षक	शहर	निर्देशांक
चंद्रिका	चंडीगढ़	30.73° ਚ., 76.78° ਧ੍ਰ.
नईम	नागपुर	21.15° ਚ., 79.09° ਧ੍ਰ.
केट	कोची	9.93° ਚ., 76.27° ਧ੍ਰ.
मयंक	मुंबई	19.08° ਚ., 72.88° ਧ੍ਰ.
कमल	कोलकाता	22.57° ਚ., 88.36° ਧ੍ਰ.

मान लें कि सभी पर्यवेक्षकों ने अपनी अपनी घड़ियों को भारतीय मानक समय के साथ ठीक से मिला लिया है। प्रत्येक कथन के लिए पता करें कि वह बयान किस पर्यवेक्षक द्वारा दिया गया था?

ध्यान दें: आपको कारण बताने की जरूरत नहीं है। केवल पर्यवेक्षक के नाम और बयान संख्या के साथ एक तालिका पर्याप्त है। प्रत्येक सही जोड़ी आपको 1.5 अंक देती है। हालांकि, प्रत्येक गलत जोड़ी के लिए, आप 0.5 अंक खो देंगे।