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Problems and Solutions

1. Let ABC be a triangle with ∠BAC > 90
◦
. Let D be a point on the segment BC and E be a

point on the line AD such that AB is tangent to the circumcircle of triangle ACD at A and BE is
perpendicular to AD. Given that CA = CD and AE = CE, determine ∠BCA in degrees.

Solution: Let ∠C = 2α. Then ∠CAD = ∠CDA = 90◦ − α. Moreover ∠BAD = 2α as BA is
tangent to the circumcircle of 4CAD. Since AE = AD, it gives ∠AEC = 2α. Thus 4AEC is
similar to 4ACD. Hence

AE

AC
=
AC

AD
.

But the condition that BE ⊥ AD gives AE = AB cos 2α = c cos 2α. It is easy to see that
∠B = 90◦ − 3α. Using sine rule in triangle ADC, we get

AD

sin 2α
=

AC

sin(90− α)
.

This gives AD = 2b sinα. Thus we get

b2 = AC2 = AE ·AD = (c cos 2α) · 2b sinα.

Using b = 2R sinB and c = 2R sinC, this leads to

cos 3α = 2 sin 2α cos 2α sinα = sin 4α sinα.

Writing cos 3α = cos(4α − α) and expanding, we get cos 4α cosα = 0. Therefore α = 90◦ or
4α = 90◦. But α = 90◦ is not possible as ∠C = 2α. Therefore 4α = 90◦ which gives ∠C = 2α = 45◦.

2. Let A1B1C1D1E1 be a regular pentagon. For 2 ≤ n ≤ 11,
let AnBnCnDnEn be the pentagon whose vertices are the midpoints of the sides of the pentagon
An−1Bn−1Cn−1Dn−1En−1. All the 5 vertices of each of the 11 pentagons are arbitrarily coloured
red or blue. Prove that four points among these 55 points have the same colour and form the
vertices of a cyclic quadrilateral.

Solution: We first observe that all the eleven pentagons are regular. Moreover, there are 5 fixed
directions and all the 55 sides are in one of these directions. If we consider any two sides which are
parallel, they are the parallel sides of an isosceles trapezium, which is cyclic.

If we consider any pentagon, its two adjacent vertices have the same colour. Consider all such 11
sides whose end points are of the same colour. These are in 5 fixed directions. By pigeon-hole
principle, there are 3 sides which are in the same directions and therefore parallel to each other.
Among these three sides, two must have end points having one colour (again by P-H principle).
Thus there are two parallel sides among the 55 and the end points of these have one fixed colour.
But these two sides are parallel sides of an isosceles trapezium. Hence the four end points are
concyclic.

3. Let m,n be distinct positive integers. Prove that

gcd(m,n) + gcd(m+ 1, n+ 1) + gcd(m+ 2, n+ 2) ≤ 2|m− n|+ 1.

Further, determine when equality holds.



Solution: Observe that
gcd(m+ j, n+ j) = gcd(m+ j, |m− n|),

for j = 0, 1, 2. Hence we can find positive integers a, b, c such that

gcd(m,n) =
|m− n|

a
, gcd(m+ 1, n+ 1) =

|m− n|
b

, gcd(m+ 2, n+ 2) =
|m− n|

c
.

It follows that |m− n| divides ma, (m+ 1)b and (m+ 2)c. Hence we can see that |m− n| divides
ab and bc. We get |m− n| ≤ ab and |m− n| ≤ bc. This leads to

b ≥ |m− n|
a

, b ≥ |m− n|
c

.

Thus

gcd(m,n) + gcd(m+ 1, n+ 1) + gcd(m+ 2, n+ 2)

=
|m− n|

a
+
|m− n|

b
+
|m− n|

c
≤ 2b+

|m− n|
b

.

We have to prove that

2b+
|m− n|

b
≤ 2|m− n|+ 1.

Taking |m−n| = K, we have to show that 2b2+K ≤ b(2K+1). This reduces to (b−K)(2b−1) ≤ 0.
However

K = |m− n| ≥ b ≥ 1 >
1

2
.

Equality holds only when (m,n) = (k, k + 1) or (2k, 2k + 2) or permutations of these for some k.

4. Let n and M be positive integers such that M > nn−1. Prove that there are n distinct primes
p1, p2, p3, . . . , pn such that pj divides M + j for 1 ≤ j ≤ n.

Solution: If some number M + k, 1 ≤ k ≤ n, has at least n distinct prime factors, then we can
associate a prime factor of M + k with the number M + k which is not associated with any of the
remaining n− 1 numbers.

Suppose m+ j has less than n distinct prime factors. Write

M + j = pα1
1 pα2

2 · · · pαr
r , r < n.

But M + j > nn−1. Hence there exist t, 1 ≤ t ≤ r such that pαt
t > n. Associate pt with this M + j.

Suppose pt is associated with some M + l. Let pβt

t be the largest power of pt dividing M + l. Then

pβt

t > n. Let T = gcd
(
pαt
t , p

βt

t

)
. Then T > n. Since T |(M + j) and T |(M + l), it follows that

T |(|j − l|). But |j − l| < n and T > n, and we get a contradiction. This shows that pt cannot be
associated with any other M + l. Thus each M + j is associated with different primes.

5. Let AB be a diameter of a circle Γ and let C be a point on Γ different from A and B. Let D be
the foot of perpendicular from C on to AB. Let K be a point of the segment CD such that AC is
equal to the semiperimeter of the triangle ADK. Show that the excircle of triangle ADK opposite
A is tangent to Γ.

Solution: Draw another diameter PQ ⊥ AB. Let E be the point at which the excircle Γ1 touches
the line AD. Join QE and extend it to meet Γ in L. Draw the diameter EN of Γ1 and draw
QS ⊥ NE (extended). See the figure. We also observe that DE = EM = EN/2.



Since AE is equal to the semiperimeter of 4ADK, we have AC = AE. Hence AE2 = AC2 =
AD ·AB (as ACB is a right-angle triangle). Thus

AD(AD +DE + EB) = (AD +DE)2 = AD2 + 2AD ·DE +DE2.

Simplification gives

AD · EB = AD ·DE +DE2

= DE(AD +DE)

= DE ·AE
= DE(AB −BE).

Therefore
DE ·AB = EB(AD +DE) = EB ·AE.

But
DE ·AB = DE · PQ = 2DE ·OQ = EN · ES,

and EB ·AE = QE · EL. Therefore we get

QE · EL = EN · ES.

It follows that Q,S, L,N are concyclic. Since ∠QSE = 90◦, we get ∠ELN = 90◦. Since EN is a
diameter, this implies that L also lies on Γ1. But ∠QLP = 90◦. Therefore L,N, P are collinear.
Since NM ‖ PO and

NM

PO
=
NE

PQ
=
LN

LP
,

it follows that L,M,O are collinear. Hence Γ1 is tangent to Γ at L.

Alternate solution: Let R be the radius the circle Γ and r be that of the circle Γ1. Let O be the
centre of Γ and M be that of the circle Γ1. Let E be the point of contact of Γ1 with AB. Then
ME = DE = r. Observe that AE is the semiperimeter of 4ADE. We are given that AC = AE.
Using that ∠ACB = 90◦, we also get AC2 = AD · AB. Hence AE2 = AD · AB. We have to show
that R− r = OM for proving that Γ1 is tangent to Γ. We have

OM2 − (R− r)2 = OE2 + r2 − (R− r)2 = (AD +DE −AO)2 + r2 − (R− r)2

= (AD − (R− r))2 + r2 − (R− r)2 = AD2 − 2AD · (R− r) + r2

= (AD2 + 2AD · r + r2)− 2AD ·R = (AD + r)2 −AD ·AB
= (AD +DE)2 −AD ·AB = AE2 −AD ·AB = 0.



Hence OM = R− r and therefore Γ1 is tangent to Γ.

6. Let f be function defined from the set {(x, y) : x, y reals, xy 6= 0} in to the set of all positive real
numbers such that

(i) f(xy, z) = f(x, z)f(y, z), for all x, y 6= 0;

(ii) f(x, yz) = f(x, y)f(x, z), for all x, y 6= 0;

(iii) f(x, 1− x) = 1, for all x 6= 0, 1.

Prove that

(a) f(x, x) = f(x,−x) = 1, for all x 6= 0;

(b) f(x, y)f(y, x) = 1, for all x, y 6= 0.

Solution: (The condition (ii) was inadvertently left out in the paper. We give the solution with
condition (ii).)

Taking x = y = 1 in (ii), weget f(1, z)2 = f(1, z) so that f(1, z) = 1 for all z 6= 0. Similarly,
x = y = −1 gives f(−1, z) = 1 for all z 6= 0. Using the second condition, we also get f(z, 1) =
f(z,−1) = 1 for all z 6= 0. Observe

f

(
1

x
, y

)
f(x, y) = f(1, y) = 1 = f(x, 1) = f

(
x,

1

y

)
f(x, y).

Therefore

f

(
x,

1

y

)
= f

(
1

x
, y

)
=

1

f(x, y)
,

for all x, y 6= 0. Now for x 6= 0, 1, condition (iii) gives

1 = f

(
1

x
, 1− 1

x

)
= f

(
x,

1

1− 1
x

)
.

Multiplying by 1 = f(x, 1− x), we get

1 = f(x, 1− x)f

(
x,

1

1− 1
x

)
= f

(
x,

1− x
1− 1

x

)
= f(x,−x),

for all x 6= 0, 1. But f(x,−1) = 1 for all x 6= 0 gives

f(x, x) = f(x,−x)f(x,−1) = f(x,−x) = 1

for all x 6= 0, 1. Observe f(1, 1) = f(1,−1) = 1. Hence

f(x, x) = f(x,−x) = 1

for all x 6= 0, which proves (a).

We have

1 = f(xy, xy) = f(x, xy)f(y, xy) = f(x, x)f(x, y)f(y, x)f(y, y) = f(x, y)f(y, x),

for all x, y 6= 0, which proves (b).
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