INSTRUCTIONS SHEET - INBO 2019

प्रश्न पत्र दो खण्डों A और Bमें विभाजित है.सभी उत्तर केवल उत्तर पुस्तिका में हीं लीखिए जिसे परीक्षा की समाप्ति पर वापस ले लिए जायेगा.प्रश्न पत्र को वापस जमा करने की कोई आवश्यकता नहीं है.

खंड A

- खंड A में 1 अंक वाले 26 प्रश्न हैं.
- सभी 26 प्रश्न बहु-विकल्पी प्रकार के हैं और विकल्पों में से केवल एक ही सही उत्तर है.
- दी गयी उत्तर पुस्तिका में '🗹' का निशान लगाकर सही उत्तर अंकित करें. उत्तरों को अंकित करने का सही तरीका नीचे दिखाया गया है. उत्तरों को देने के लिए कलम का प्रयोग करें.

Q. No.	a	b	c	d
		>		

प्रत्येक गलत उत्तर के लिए ऋणात्मक अंक हैं जिसे नीचे अंकन कुंजी (स्कोरिंग की) में दर्शाया गया है.

खंड B

- खंड **B** मे 74 अंकों के कुल 30 प्रश्न है.
- खंड B में प्रश्नों से प्राप्त होने वाले अंक, उत्तरों की संख्या और उनकी जटिलता के साथ बदलते रहेंगे. ये अंक प्रश्नों के समक्ष हीं दर्शाए गए हैं.
- अंतर्विरोधी उत्तर अंक देने के लिए विचारणीय नहीं होंगे.

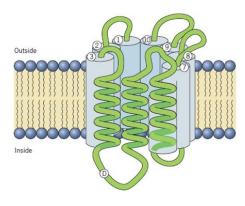
SCORING KEY

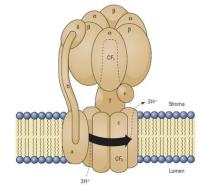
सही उत्तरों की संख्या: X

गलत उत्तरों की संख्या: Y

INBO प्राप्तांक (THEORY): खंडA: 3X – Y

खंड B: 3X


INDIAN NATIONAL BIOLOGY OLYMPIAD – 2019


खंड A

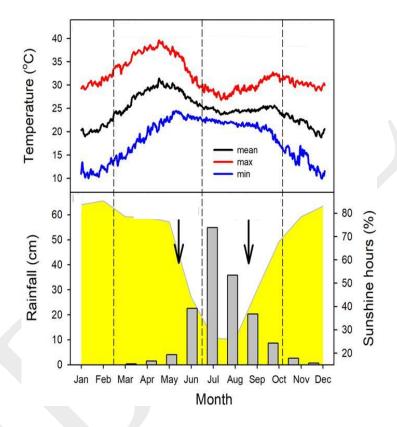
कोशिका विज्ञान(7 अंक)

- 1. (1 अंक)जब मनुष्य के जीनोम का अनुक्रमण (सिक्वेंसिंग) किया गया तो उसमे लगभग 20,000 जीन पाए गए.जटिलता के आधार पर मनुष्यों के जीनोम में 100,000 से ज्यादा जीन अनुमानित थे. निम्नलिखित में से कौन सा कथन इस विसंगति की व्याख्या प्रदान कर सकता है?
- a. अनुक्रमण के तात्कालिक तरीके जीनों के आधिक्य की पहचान करने में अक्षम हैं.
- b. कायिक पुनर्संयोजन (सोमैटिक रिकोम्बिनेसन) की बहुलता मनुष्यों में जीन की अधिक संख्या उत्पादित करती है.
- c. अधिकाधिक जीन, वैकल्पिक जोड़ (अल्टरनेटिव स्प्लाईसिंग) की व्यवस्था से गुजर कर प्रोटियोम में विभिन्नता उत्पादित करते हैं.
- d. कमतर जीन अनुवादन के ढाँचागत विस्थापन (फ्रेम शिफ्ट ट्रांसलेसन) द्वारा अधिक प्रोटीन्स का निर्माण करते हैं.
- 2. (1 अंक)आण्विक सैपेरॉन, ATP की ऊर्जा का उपयोग कर प्रोटीन्स के वलन (फोल्डिंग) को बढ़ावा देते हैं.ATP की उपस्थित में सैपेरॉन एक खुली (ओपेन) बनावट की अवस्था अपना लेते हैं. इस कारण से सैपेरॉन का पॉकेट (P) प्रदर्शित हो जाता है और नवजात पॉलीपेप्टाइड के उस हिस्से से बंध जाता हैजो संग्रहण (एग्रीगेशन) को बढ़ावा देता है. ऐसी कल्पना कीजिए किजीवन की उत्पत्ति पानी की जगह बेंजीन में हुई और प्रोटीन में वही अमीनो अम्ल पाए जाते हैं जो आज जीव जगत में हैं. ऐसी काल्पनिक परिस्थिति में, निम्नलिखित में से कौन सा अमिनो अम्ल सैपेरॉनके पॉकेट P की परत (लाइनिंग) को बनाएगा?
 - a. आइसोल्यूसीन
 - b. ग्लूटामीन
 - c. आर्जीनीन
 - d. सिस्टीन

- 3. (1 अंक)एक द्विगुणित जीव के 2n का मान 4 है. इस जीव की कायिक कोशिका की G1 और G2 अवस्थाओं में गुणसूत्र और DNA के अणुओं की संख्याक्रमशः कितनी होगी? (केवल केन्द्रकीय DNA को ध्यान में रखिये)
 - a. G1: 4 और 4, G2: 4 और 4
 - b. G1: 4 और 4, G2: 4 और 8
 - c. G1: 4 और 4, G2: 8 और 4
 - d. G1: 4 और 4, G2: 8 और 8
- **4.**(1 point) अंत:-सहजीविता (एंडोसिम्बायोटिक) सिद्धांत के अनुसार, हरित लवक, एक मुक्त-जीवी पूर्वकेंद्रकीय जीव था, सुकेंद्रकीय कोशिका में समाहित हो कर स्वतंत्र अस्तित्व की क्षमता को खो देता है. इस सिद्धांत के आधार पर हरित लवक के जीनोम से निरूपित होने की निम्नतम संभावना निम्न में से किसकी है?
- a. हरित लवक का DNA पॉलीमेरेज
- b. हरित लवक का RNA पॉलीमेरेज
- c. हरित लवक के राइबोसोम्स के उप-घटक (सब-यूनिट)
- d. हरित लवक का tRNA
- 5.(1 अंक)धरती की सतह पर पहुँचने वाली सूर्य की किरणों के केवल 400nm से 700nm तरंग दैर्घ्य वाली किरणों का उपयोग अधिकतर जैविक प्रक्रियायों में होता है. निम्नलिखित में से कौन सा संक्रमण (ट्रांजिसन) जो जीवन के लिए क्रांतिक (क्रिटिकल) है, उन अणुओं में होगा जो इस तरंग दैर्घ्य की परास वाले फ़ोटॉन का अवशोषण करते हैं?
- a. कम्पन (वाईब्रेशनल) संक्रमण
- b. घूर्णीय (रोटेशनल) संक्रमण
- c. इलेक्ट्रोनिक संक्रमण
- d. नाभिकीय संक्रमण
- **6.**(1 point)ATPases प्रोटीन के वे संकुल हैं जो कोशिका की विभिन्न झिल्लियों पर पाए जाते हैं. नीचे दिया गया चित्र दो मुख्य प्रकार के ATPase, P-टाइप और F-टाइप ATPaseकी संरचना को दर्शाताहैं.

P-type ATPase

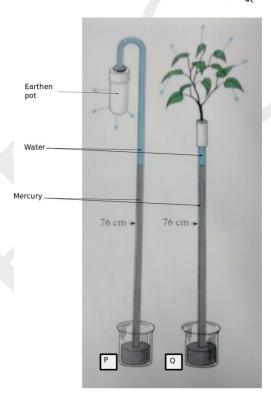
F-type ATPase


निम्नलिखित में से कौन सा/से कथन ATPases के विषय में सही है/हैं?

- i. ATPases सदैव ATP के संश्लोषण का काम करते हैं.
- ii. P-टाइप ATPase एकल पेप्टाइड से बने होते है.
- iii. F-टाइप ATPase एक बहु-प्रोटीन संकुल है.
- iv. ऊपर दिखाए गए दोनों हीं प्रकार के ATPases,आयनों के सक्रिय परिवहन में सीधे रूप से लगे रहते हैं.
- a. केवल i
- b. ii और iii
- c. i और iv
- d. केवल iv
- 7.(1 अंक)एक वैज्ञानिक, मनुष्यों के किसी विशेष DNA के क्रम का विश्लेषण और किसी बीमारी से उसके संबंध का अध्ययन करता है. वैज्ञानिक की परिकल्पना कि DNA का यह क्रम किसी बीमारी से संबंधित **नहीं** है को निम्लिखित में से कौन सा आंकड़ा सबसे अच्छे तरीके से समर्थित करता है?

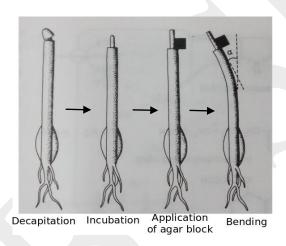
	बीमार व्यक्तियों की प्रतिशतता जिनमे यह क्रम	स्वस्थ व्यक्तियों की प्रतिशतता जिनमे यह क्रम
	उपस्थित है	उपस्थित है
A	48%	52%
В	65%	35%
С	90%	10%
D	20%	80%

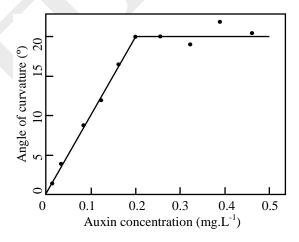
पादप विज्ञान(5 points)


8.(1 अंक) निम्न रेखाचित्र भारत के किसी उष्णकटिबंध प्रदेश में वार्षिक तापमान, वर्षा और सूर्य की रोशनी को दर्शाता है.

(ऊपरी पैनल: तीन रेखाएं अधिकतम, माध्य और न्यूनतम तापमान को इंगित करते है. निचले पैनल: स्लेटी स्तम्भ (बार) वर्षा की मात्रा और वक्र घंटों में प्रकाश काल को इंगित करता है) इस क्षेत्र में उग रहे पेड़ों पर मार्च और अप्रैल के महीनों में नयी पत्तियाँ दिखती हैं. यह साल का सबसे गर्म और सूखा समय होता है. निम्नलिखित में से कौन सा विकल्प इस घटना का कारण हो सकता है?

i. वर्षा ऋतु के साथ आने वाली नयी पत्तियाँ कीटों से भक्षण से बचाती है.

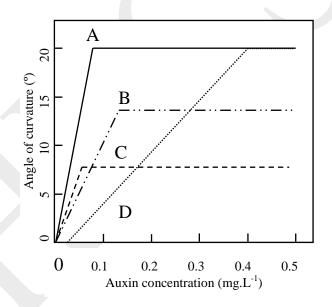

- ii. नयी पत्तियाँ, प्रकाश संश्लेषण की दक्षता के अधिकतम मान के कारण प्रकाश काल की अधिकता का लाभ उठा पाएंगी.
- iii. नयी पत्तियों से पानी की हानि न्यूनतम होती है इसलिए वे शुष्क काल के दौरान सबसे दक्ष होंगी.
- iv. उच्च तापमान जैसे अजीवीय तनाव को सहन करने में नयी पत्तियाँ, पुरानी पत्तियों की तुलना में ज्यादा सहनशील होती हैं.
- a. केवल i और ii
- b. केवल ii और iv
- c. केवल iii और iv
- d. i, ii, iii और iv
- 9.(1point) नीचे दिखाए गए प्रयोगात्मक दशा का प्रेक्षण ध्यान पूर्वक करें और दिए गए प्रश्न का उत्तर दीजिये.


यह प्रयोगात्मक दशा किस परिकल्पना की जाँच करने के लिए बनाई गई है?

a. पौधे के लिए आवश्यक पानी की मात्रा, वाष्पोत्सर्जन द्वारा पानी के वाष्पन की दर में वृद्धि के साथ बढ़ती है.

- b. वाष्पोत्सर्जनकी प्रक्रियास्तम्भों (कॉलम्स) में पानी को खींचने के लिए पर्याप्त दाब उत्पन्न कर सकती है.
- c. वायुमंडलीय दाब में वृद्धि पौधों में वाष्पोत्सर्जनकी दर को बढ़ाता है.
- d. तनों में पानी के परिवहन की प्रक्रिया को द्रव के एक अखंडित स्तम्भ की आवश्यकता होती है.
- 10. (1 अंक) Went द्वारा 1928 में विकसित, प्रांकुर-चोल के नमन के जाँच की विधि में सिर कटे प्रांकुर-चोल को कुछ घंटे रखते है. पौधों के हार्मोन ऑक्जिन के विशेष सान्द्रण में भीगे हुए अगार (agar) के एक खंड को सिर कटे प्रांकुर-चोलके एक तरफ रखा जाता है. इस व्यवस्था को पूरी प्रक्रिया के दौरान पूर्णतः अँधेरे में रखते है. कुछ घंटों बाद, सिरे के नमन को मापते हैं. दिया गया चित्र इस व्यवस्था के चार चरणों को दर्शाता है.

नीचे दिया गया आलेख ऑक्जिन के सांद्रण का नमन या वक्रता पर होने वाले प्रभाव के संबंध को दर्शाता है.

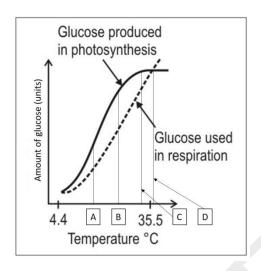


इस आलेख का उपयोग किसी नमूने के भींगे हुए खंड से उत्पन्न नमन/वक्रता के कोण को माप कर ऑक्जिन के सांद्रण के निर्धारण में किया जा सकता है.

ऊपर दर्शाए गए प्रयोग के आधार पर प्रश्न 10 और 11 के उत्तर दीजिये.

निम्नलिखित में से कौन सी दशा, नमूने में ऑक्जिन के सांद्रण का अनुमान सामान्य से अधिक लगा सकती है?

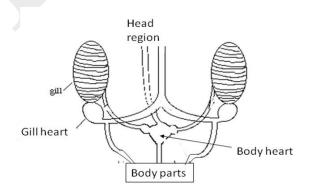
- a. जब अगार के खंड को किसी अज्ञात ऑक्जिनसे परिपूरित कर सिर काटने के तुरंत बाद लगा देते हैं.
- b. जब अगार के खंड को प्रांकुर-चोल के बगल की बजाय शीर्ष के एकदम ऊपर रख दिया जाता है.
- c. यदि अगार के खंड के आकार को आधा कर दिया जाये तब.
- d. यदि अगार के खंड के लगाने और नमन को मापन के बीच के समय को घटा दिया जाये तब.
- 11. (1 अंक)यदि प्रांकुर चोल की ऑक्जिनसंवेदनशीलता में कमी आ जाये तो यह आरेख कैसा दिखेगा?

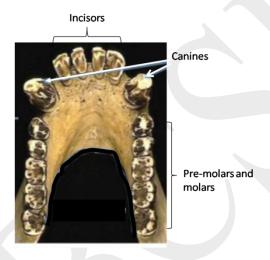

a. A

b. B

c. C

d. D


12. (1 अंक) प्रकाश संश्लेषण द्वारा पौधों में ग्लूकोज का उत्पादन होता है जो बाद में पौधों की वृद्धि में उपयोग में लाया जाता है. किसी पौधे के विभिन्न तापमान पर वृद्धि को नीचे आलेख में दिखाया गया है. यदि अन्य सभी दशाएं अपरिवर्तित रहें तो किस तापमान पर पौधा सबसे तेज वृद्धि दर्शायेगा?


- a. A
- b. B
- c. C
- d. D

जंतु विज्ञान (2 अंक)

13. (1 point) स्क्विड और ऑक्टोपस, मोलस्क संघ के जीव है जो सबसे सिक्रिय जलीय अकशेरुकीय जीवों में से एक हैं. स्क्विड के परिसंचरण तंत्र को नीचे चित्र में दिखाया गया है. इसमे दो प्रकार के हृदय, जिनके नाम गिल हृदय और कायिक (बॉडी) हृदय, है. निम्नलिखित में से कौन सा विकल्प इस परिसंचरण तंत्र से होकर बहने वाले रक्त का सही क्रम दर्शाता है?

- a. शरीर और सिर के हिस्से → गिल हृदय → गिल्स → कायिक हृदय → सिर और शरीर के हिस्से
- b. शरीर के हिस्से → कायिक हृदय → गिल्स → गिल हृदय → सिर और शरीर के हिस्से
- c. शरीर के हिस्से → कायिक हृदय → गिल्स → गिल हृदय → कायिक हृदय → सिर और शरीर के हिस्से
- d. शरीर के हिस्से और सिर >े गिल्स >े गिल हृदय > कायिक हृदय >े सिर और शरीर के हिस्से
- 14. (1 अंक) नीचे एक जबड़े की संरचना दिखाई गई है जो शायद किसी वानर की है या मनुष्य के सबसे नजदीकी पूर्वज की है.निम्नलिखित में से कौन सा कथन सही है?

- a. यह संभवतः मनुष्यों के पूर्वज का जबड़ा है क्योंकि मोलर्स और प्री-मोलर्स दांतों की व्यवस्था मनुष्यों के पूर्वजों की खोपड़ी से मिलती है.
- b. जबड़े के विचित्र आकार और दांतों के बीच की दूरी के कारण यह संभवतः वानर का जबड़ा है.
- c. यह संभवतः मनुष्यों के पूर्वज का जबड़ा है क्योंकि इन्सिजर्स और कैनाइन्स दांतों की संख्या मनुष्यों के पूर्वजों की खोपड़ी से मिलते है.
- d. यह जबड़ा वानर का नहीं हो सकता क्योंकि वानर शाकाहारी होते हैं और उनमे कैनाइन्स दांत नहीं पाए जाते.

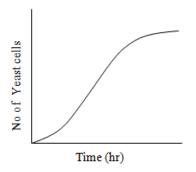
आनुवांशिकी और उद्विकास(2 points)

15. (1 अंक) तीन सहोदरों के रक्त समृह इस प्रकार से हैं: B Rh धनात्मक; A Rh ऋणात्मक; और O Rh धनात्मकहैं| दी गई जानकारी के आधार पर जनकों में रक्त समूह निर्धारण के दोनों गुणसूत्र बिंदु (loci) का जीनोटाइप कैसा होगा? (सूचना: Rh धनात्मकअलील प्रभावी है और + से दर्शाया गया है.)

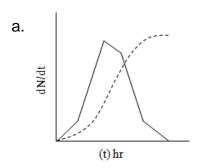
a.
$$I^A I^B + -$$
 और $I^A i + -$

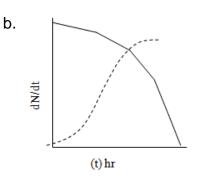
$$I^{A}I^{B}+-$$
 और $I^{A}i^{B}+-$ b. $I^{B}i^{B}++$ और $I^{A}i^{B}+-$

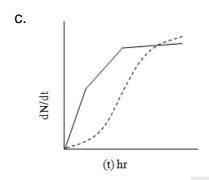
$$c$$
 . $I^B i + -$ और $I^A i - d$. $I^A I^B + +$ और $i i + -$

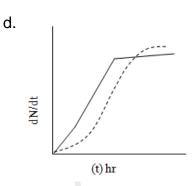

$$d$$
. $I^A I^B + + 3$ $i i + -$

16.(1 point)एक नैसर्गिक आबादी में व्यक्तिगत अलील की आवृत्तियाँ, समय के साथ परिवर्तित होती रहती है. अलील की आवृत्ति में पाए जाने वाले बदलाव के लिए कई कारक उत्तरदायी हो सकते है. इनमे से केवल एक कारक जो अनुकूलनीय उद्विकास (एडैप्टिव इवोल्युसनरी) परिवर्तन उत्पन्न करता है कौन सा है?

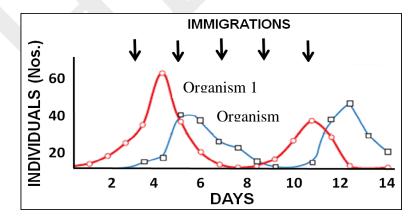

- a. यादृच्छिक (रैंडम) उत्परिवर्तन.
- b. अप्रवासन और उत्प्रवासन.
- c. प्राकृतिक चयन.
- d. जेनेटिक प्रवाह (ड्रिफ्ट).


पारिस्थितिकी (3 अंक)


(1 अंक) अजैविक और जैविक घटकों की जीव रचनाओं (लाइफ फॉर्म्स) से अन्योंयक्रियायो (इन्टेरैक्सन) 17. को समझने के लिए ,वृद्धि वक्र के अध्ययन का एक प्रयोग लगाया जा सकता है. जब खमीर (यीस्ट) कोशिकाओं को वर्धन माध्यम में वर्धित करते है तो नीचे दिखाया गया सिग्माभी (सिग्मॉयडल) वक्र प्राप्त हुआ.



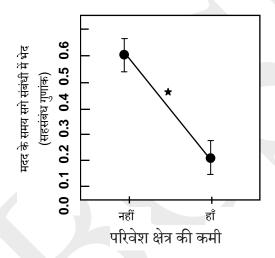
यदि ऊपर प्राप्त वक्र को वृद्धि दर के वक्र में बदलें जहाँ आरेखसमय के साथ कोशिका की संख्या में होने वाले बदलाव को समय के साथ दिखाया गया है तो, प्राप्त आरेख निम्न में से किस प्रकार का आरेख मिलेगा?



18. (1 अंक) नीचे दिए गए चित्र में प्रयोगशाला में वर्धित दो जीवों 1 और 2 के मध्य हो रही अन्योंयक्रियाओं को दिखाया गया है. विभिन्न समय अंतराल पर, दोनों प्रजातियों की व्यष्टियों को माध्यम में प्रस्तावित कर उनके आबादी के घनत्व को बनाए रखा जाता है (प्राकृतिक अप्रवासन प्रक्रिया की तरह).

निम्नलिखित में से कौन सा/से कथन इस पारस्परिक संबंध के विषय में सही है/हैं?

- i. यदि अप्रवासन नहीं होगा तो दोनों ही प्रजातियों की आबादी 6 से 10 दिनों में समाप्त हो जायेगी.
- ii. जीव 1 यथा संभव जीव 2 का परभक्षी है.
- iii. आरेख परभक्षी और शिकार के बीच सामान्य संबन्ध को दर्शाता है. इसलिए इस प्रयोग में, वाह्य स्रोतों से प्रजातियों का अप्रवासन, प्रजातियों के सह-अस्तित्व के लिए आवश्यक नहीं है.
- iv. जीव 1 और 2 एक दूसरे से सहजीविता से संबंध को दर्शाते है.
- a. i और ii
- b. iii और iv
- c. केवल i
- d. केवल iv
- 19. $(1 \ 34)$ नीचे तीन जानवरों की संख्या में प्राकृतिक वृद्धि की आतंरिक दर (r), उत्पत्ति काल (दिनों में) और शुद्ध प्रजनन दर (R_0) को दिखाया गया है:
 - r औसत उत्पत्ति काल R_0


(i) 0.0125	141.8	5.9
(ii) 0.101	55.6	275
(iii) 0.111	30.9	30.9

क्रमशः (i), (ii) और (iii) संभावित रूप से कौन से जानवर हैं?

- a. चूहा, झींगुर (बीटल)और जूं.
- b. जूं, झींगुर और चूहा.
- c. चूहा, जूं और झींगुर.
- d. जूं, चूहा, और झींगुर.

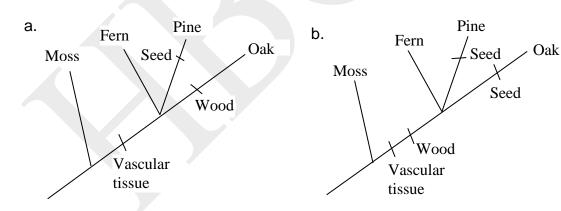
जीव पारिस्थितिकी (4 अंक

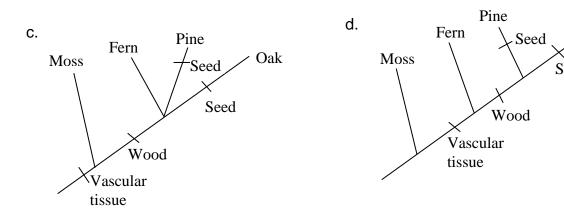
20. (1 point) पक्षियों की लगभग 9% प्रजातियाँ सहकारी रूप से प्रजनन करती है जहाँ प्रजनन न कर सकने वाले "मददगार" पंछी अन्य पंछियों की सन्तितयों की परविरश करते हैं. मददगार पंछी स्वयं के प्रजनन को भूल कर, प्रजनन करने वाले जोड़े को, ऊर्जा के दृष्टिकोण से मंहगी, संतित के पालन की प्रक्रिया में सहायता प्रदान करते हैं. अन्य कई संकरित (कंफाऊन्डिंग) कारक इस मददगार व्यवहार को प्रभावित करते है. ऐसे हीं एक कारक, परिवेश क्षेत्र की कमी, के प्रभाव को (हाँ या ना) से नीचे आलेख में दर्शाया गया है.

- a. आलेख यह दिखाता है कि यदि परिवेश क्षेत्र सीमित ना हो तो पंछियों के मददगार के रूप में काम करने की संभावना अधिक होती है.
- b. यदि पर्याप्त परिवेश क्षेत्रस्लभ हो तो अपरिचित पंछियों द्वारा मददगार व्यवहार दर्शाने की प्रवृत्ति बढ़ जाती है.
- c. जब घोंसले बनाने की जगहें सीमित होती हैं तो पंछियों के मददगार व्यवहार दिखाने कीप्राथमिकता कम हो जाती है.
- d. आलेख यह दिखाता है कि यदि परिवेश क्षेत्र सीमित हो तो अपरिचित पंछियों के प्रजनन जोड़े के मददगार के रूप में काम करने की संभावनाबढ़ जाती है.
- 21. (1 अंक)नीचे दी गई तालिका, बाघों के अध्ययन क्षेत्रों में उपस्थिति या अनुपस्थिति की संभावना की संख्या कोउनके प्राकृतिक आवास के उपयोग के गणितीय मॉडल और उन क्षेत्रों में कठोर क्षेत्रीय सर्वेक्षण से प्राप्त हुए बाघों

की वास्तविक उपस्थिति या अनुपस्थितिकी संख्या को दर्शता है. ऐसा मानते हुए की क्षेत्रीय सर्वेक्षण से प्राप्त जानकारी एकदम सही है प्रश्न 21 और22 के उत्तर दीजिये.

		क्षेत्रीय सर्वेक्षण से ज्ञात	
		उपस्थित	अनुपस्थित
प्राकृतिक आवास के उपयोग के	उपस्थित	26	6
गणितीय मॉडल से संभावित	अनुपस्थित	9	43

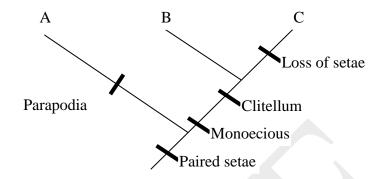

सभी अध्ययन क्षेत्रों का कितना प्रतिशत प्राकृतिक आवास मॉडल द्वारा सबसे सटीक रूप से पूर्वानुमानित किया गया था?


- a. 41.7
- b. 74.3
- c. 82.1
- d. 87.7
- **22.** (1 अंक)निम्निलिखित में से कौन सा कथन प्राकृतिक आवास मॉडल के सटीक होने की सबसे उत्तम व्याख्या प्रदान करता है?
- a. मॉडल, बाघ की अनुपस्थिति की जगह उनकी उपस्थिति की संभावना व्यक्त करने में ज्यादा बेहतर था.
- b. मॉडल, बाघ की उपस्थिति की जगह उनकी अनुपस्थिति की संभावना व्यक्त करने में ज्यादा बेहतर था.
- c. मॉडल, बाघ की उपस्थिति और अनुपस्थिति की संभावना एकसमान रूप से व्यक्त करने सक्षम था.
- d. मॉडल, बाघ की उपस्थिति और अनुपस्थिति की संभावना व्यक्त करने अक्षम था.
- 23. (1 अंक)किसी चिड़िया के अपने प्राकृतिक निवास में एक साल से दूसरे साल तक जीवित रहने की प्रायिकता मापने के लिए उनके पैरों में संख्या चिन्हित एल्युमिनियम के छल्ले लगाया जाता है. यह शोधकर्ताओं को साल दर साल चिड़ियों के उत्तरजीविता की प्रायिकता का मापन करने देता है. चिड़िया की उत्तरजीविता पर खुद छल्ले के प्रभाव का मापन कठिन है क्योंकि इसकी अनुपस्थित में उत्तरजीविता पर जो प्रभाव पड़ेंगे उनका सटीक रूप से मापन लगभग असंभव है. निम्नलिखित में से कौन सा विकल्प चिड़ियों की उनके प्राकृतिक निवास मे उत्तरजीविता पर छल्लों के प्रभाव को मापने के लिए सबसे सही कोशिश है?

- a. कुछ चिड़ियों पर बिना छल्ले के रेडियो प्रेषक लगाकर उनकी उत्तरजीविता की प्रायिकता को मापना और उसकी तुलना छल्ले वाली चिड़ियों की उत्तरजीविता से करना.
- b. कैद में रखी बिना छल्ले वाली चिड़िया की उत्तरजीविता की तुलना प्राकृतिक निवास वाली छल्ले लगी चिड़िया से करने पर
- c. एक ही प्रजाति के विभिन्न चिड़ियों पर अलग अलग भार के छल्ले लगाकर बहिर्वेशन (एक्स्ट्रापोलेसन) विधि से छल्लों के भार का उनकी उत्तरजीविता पर होने वाले प्रभाव का माप कर.
- d. एल्युमिनियम की जगह प्लास्टिक के छल्लों का उपयोग कर, विभिन्न प्रकार के छल्लों का प्रभाव चिड़ियों की उत्तरजीविता की प्रायिकता माप कर.

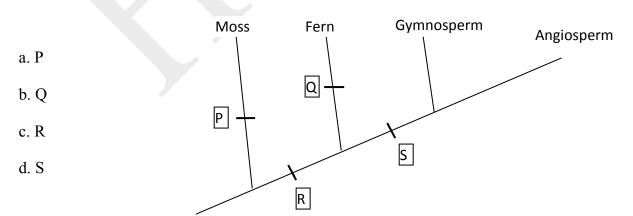
BIOSYSTEMATICS (3 अंक)

24. (1 अंक) संवहन उत्तक, काष्ठ और बीज जैसे लक्षणों को ध्यान में रखते हुए कौन सा विकल्प उद्विकासीय संबंध को सही रूप से दर्शाता है पर मितव्ययी (पार्सीमोनियस) नहीं है?



∠Oak

Seed

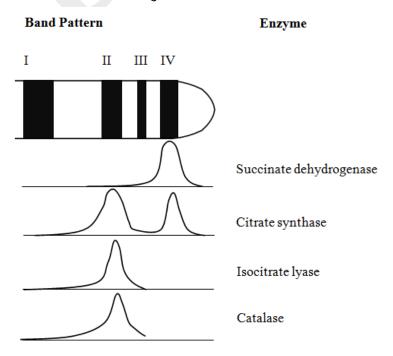

25. (1 अंक) एनिलिडा संघ के दो वर्गों के मध्य उद्विकासीय संबंधको नीचे क्लेडोग्राम से दिखाया गया है.

A, B और C क्रमशः किसको इंगित करते हैं?

- a. Polychaeta, Hirudinea और Oligochaeta
- b. Oligochaeta, Polychaeta और Hirudinea
- c. Hirudinea, Oligochaeta और Polychaeta
- d. Polychaeta, Oligochaeta और Hirudinea

26. (1 अंक) मुक्तजीवी और स्वतंत्र बीजाणुद्भिद (स्पोरोफाइट) और युग्माकोद्भिद (गैमीटोफाइट) अवस्था जैसे गुण निम्न में से किस पर सबसे सटीक बैठते है?

INDIAN NATIONAL BIOLOGY OLYMPIAD – 2019

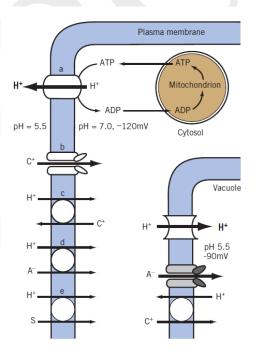

खंड B

नोट:

- सारे उत्तर केवल **उत्तर पुस्तिका** में हीं लिखें.
- परीक्षा की समाप्ति पर केवल उत्तर पुस्तिका हीं वापस ली जायेगी.

कोशिका विज्ञान(19.5 अंक)

27.(2 अंक) एक प्रयोग में, 5 दिनों से अंकुरित हो रहे Ricinus communis(अरण्डी) के बीज के भ्रूणपोष को समपरासरी माध्यम (0.4 moles/lit सूक्रोज) में एकरूपित (होमोजेनाइज) किया जाता है. इससे प्राप्त कोशिकांगों के निलंबन (सस्पेंसन) को घनत्व प्रवणता के ऊपर स्तरित करके 1,00,000 g पर 4 घंटों के लिए अपकेंद्रित करते हैं. कोशिकांग इस प्रवणता में तब तक बहते हैं जब तक कि वे अपने बराबरी वाले घनत्व के क्षेत्र में नहींपहुँच जाते. प्रोटीन की मात्रा का मापन करने परइस प्रवणता मे4 विभिन्न बंध (I-IV) मिलते है. इन बंधों में प्रत्येक बंध में चिन्हक एंजाइम की पहचान करने पर निम्नलिखित परिणाम प्राप्त हुए.



	बंध I-IV प्रस्तुत करते है:
	(नीचे दिए गए विकल्पों में से चयन करके प्रत्येक बंध के समक्ष रिक्त स्थान में सही वर्ण a-e भरें.)
	बंध I:
	बंध II:
	बंध III:
	बंध IV:
विव	कल्प:
a.	केन्द्रक
b.	पूर्व लवक (प्रोटोप्लास्टिड)
c.	सूत्रकणिका (माइटोकांड्रिया)
d.	कोशिकाद्रव
e.	सूक्ष्मकाय (माइक्रोबॉडीज)

- 28.(2.5 अंक)जीवित निकायों (सिस्टम) की एक विशेषता यह है कि उनके पास उच्च दक्षता वाले उत्प्रेरक एंजाइम होते हैं. एंजाइम्समें कई अनोखे गुण होते हैं को रासायनिक उत्प्रेरकों में नहीं पाए जाते. उपयुक्त बक्सों में () चिन्ह लगाकर इंगित करें कि निम्नलिखित कथन सही है या गलत.
- $i. \ \Delta G^0$ का मान घटा कर ये अभिक्रिया को उत्प्रेरित करते हैं.
- ii. एंजाइम्स के सक्रिय स्थान, अभिक्रिया की संक्रमण (ट्रांजिसन) अवस्था से बंधते हैं.
- iii. एंजाइम्सऔर अभिकर्मक के बने सभी संकुल, संयोजक (कोवैलेन्ट) प्रकार के होते हैं.
- iv. RNA के कुछ अणु अभिक्रिया के उत्प्रेरक भी होते हैं.
- v. 90°C जैसे उच्च तापमान पर सभी एंजाइम्सकी उत्प्रेरक क्रिया नष्ट हो जाती है.

कथन	सही	गलत
i.		
ii.		
iii.		
iv.		
v.		

29.(2 अंक)नीचे दिया गया चित्र, झिल्लियों में उपस्थित ATPase प्रोटॉन पंप और झिल्लियों के आर-पार विलेय तत्वों की अदला-बदली में लगी अन्य संरचनाओं के मध्य अन्योंयक्रिया की योजना को दर्शाता है.इस चित्र को और उनके साथ में लिखे हुए कथनों का अध्ययन ध्यानपूर्वक करें तथा ये बताएं कि उनमें से कौन सा/से कथन सत्य है. (यहाँ C^+ धनायन को, A ऋणायनको और S अनावेशित विलेय को इंगित करता है.)

- I. प्लाज्मा झिल्ली के ATPase प्रत्यक्ष रूप से प्लाज्मा झिल्ली के आर-पार मौजूद विभव के अन्तर में योगदान देते हैं.
- II. ATPase-प्रोटॉन पंप(a) किसी एकवाही (यूनिपोर्ट) निकाय की तरह कार्य करता है.
- III. प्लाज्मा झिल्ली के ATPase की सक्रियता के कारण उत्पन्न प्रोटॉनवाहक बल, कोशिकाद्रव में ऋणायनों के अक्रिय विसरण को और मुश्किल कर देता है.

उचित बक्से में (🗸) लगायें.

- a. केवल I
- b. केवला। और III
- c. केवला और II
- d. I, II और III

a.	b.	c.	d.

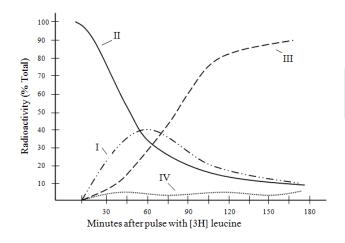
30.(3 अंक) cAMP, अपचयन दमन प्रोटीन (CRP) से बंध कर lac-ऑपेरॉनको सक्रिय करता है. CRP-cAMP संकुल lac-उन्नायक के प्रतिप्रवाह (अपस्ट्रीम) से बंधता है. यदि lac-प्रचालक मुक्त होता है (lac-दमक से ना बंधा हो) तो यह RNA पॉलीमेरेज के बंधन को बढ़ावा देता है . ग्लूकोज cAMP स्तर में कमी लाकर lac-ऑपेरॉनके सिक्रियण को अवरुद्ध करता है. एंजाइम एडीनाइलेट साइक्लेज द्वारा ATP से cAMP का उत्पादन होता है. 1971 और 1974 में Peterkofsky और Gazdar द्वारा प्रकाशित प्रसिद्ध शोध लेखों के कुछ परिणाम इस प्रकार से हैं. प्रयोग 1: E.coli को एक संश्हेषित माध्यम में वर्धित करते हैं और उसमे 1mM शर्करा का विलयन (जैसा इस तालिका दिखाया गया है) मिलाते हैं.कोशिका में एडीनाइलेट साइक्लेज की क्रियात्मकता का मापन cAMP के निर्माण से करते है. α- मिथाइलग्लूकोसाइडग्लूकोज का एक व्युत्पन्न है जो ग्लाईकोलिसिस में प्रवेश नहीं कर सकता है.

तालिका 1:

मिलावट (एडिसंस)	प्रति 2 मिनट में निर्मित cAMP के पिको मोल्स	
कुछ नहीं	828	
ग्लूकोज	80	

ग्लुकोनिक अम्ल	866
α- मिथाइलग्लूकोसाइड	84

प्रयोग 2: इन-विट्रो एडीनाइलेट साइक्लेजकी क्रियात्मकता पर ग्लूकोज का प्रभाव ग्लूकोज के विभिन्न सांद्रण वाले संवर्ध माध्यम में *E.coli B*का संवर्धन. कोशिकाओं को निकाल कर उनकेलयन से प्राप्त द्रव में एडीनाइलेट साइक्लेज की क्रियात्मकता का मापनिकया गया.


माध्यम में ग्लूकोज की प्रतिशतता	एडीनाइलेट साइक्लेज की क्रियात्मकता
0.03%	0.41
0.3%	0.39
3.0%	0.82

ऊपर दिए गए परिणामों का विश्लेषण करें और उपयुक्त बक्सों के सामने (🗸) लगाकर ये बतायें की दिए गए कथन सही हैं या गलत.

- i. ग्लूकोज का उपापचयन, एडीनाइलेट साइक्लेजके अवरोधन के लिए आवश्यक नहीं है.
- ii. ग्लूकोज, एडीनाइलेट साइक्लेज से सीधे रूप से बंधकर उसका अवरोधन करता है.
- iii. ग्लूकोज और ग्लूकोज जैसे अणुओं का अखंड कोशिका में संभावित परिवहन एडीनाइलेट साइक्लेजके अवरोधन के लिए जरूरी है.

कथन	सही	गलत
i.		
ii.		
iii.		

31.(4 अंक) स्पंद-अनुसरण (पल्स-चेज) विश्लेषण समयांतराल के साथ होने वाली कोशिकीय प्रक्रियाओं के अध्ययन की वह क्रियाविधि है जिसमें कोशिका को चिन्हित यौगिक के एक स्पंद से प्रदर्शित करते हैं और बाद में चिन्हित यौगिक को सामान्य यौगिक से बदलते हैं. रेडियोधर्मी ल्यूसीन [³H-leucine] का उपयोग अग्न्याशय की βिकोशिकाओं द्वारा इन्सुलिन के संश्लेषण की विधि के अध्ययन में किया जाता है.जब βि-कोशिकाओं को ³H-ल्यूसीन से 30मिनट तक अभिकर्मित करते हैं और बीच बीच में नमूने निकालते हैं तो निम्नलिखित परिणाम प्राप्त हुए. प्राप्त हुए चार आरेख संभवतः ये इंगित करते हैं.

- a. I: इन्सुलिन के कारण गाल्जी में रेडियोधर्मिता.
- b. I: इन्सुलिन के कारण कोशिका के बाहर रेडियोधर्मिता.
- c. I: प्रो-इन्सुलिन के कारण श्रावित पुटिकाओं में रेडियोधर्मिता.
- d. II: प्रो-इन्सुलिन के कारण कोशिकाद्रव में रेडियोधर्मिता.
- e. II: प्रो-इन्सुलिन के कारण खुरदुरी अन्तः द्रव्यी जालिका में रेडियोधर्मिता.
- f. III: इन्सुलिन के कारण श्रावित पुटिकाओं में रेडियोधर्मिता.
- g. III: प्रो-इन्सुलिन के कारण गाल्जी उपकरण में रेडियोधर्मिता.
- h. IV: C-पेप्टाइड के कारण गाल्जी उपकरण में रेडियोधर्मिता.
- i. IV: प्रो-इन्सुलिन के कारण खुरदुरी अन्तः द्रव्यी जालिका में रेडियोधर्मिता.

ऊपर दिए गए विकल्पों में से चयन कर के नीचे रिक्त स्थानों के समक्ष सही उत्तर को इंगित करने वाले वर्ण
(एल्फाबेट) को लिखें.
आरेख I:
आरेख II:
आरेख III:
आरेख IV:

 $32.(2 \ \text{अंक})$ पुनर्वेशित DNA विधि में जीवाणुओं के रूपांतरण का उपयोग प्रायः E.coli कोशिका मे किसी प्लाज्मिड को प्रवेश करा कर किया जाता है. इस प्रक्रिया की सफलता इस बात पर निर्भर करती है की प्रत्येक जीवाणु को एक पुनर्वेशित प्लाज्मिड रूपांतरित कर सके. किसी प्रयोग में $3000 \ \text{bp}$ वाले एक प्लाज्मिड के $1 \times 10^{-9} \text{g}$ को E.coli कोशिकाओं में रूपांतरित किया गया . परिणामस्वरूप, 1×10^{8} रूपांतरितE.coli कोशिकाएं प्राप्त हुई . इस प्रयोग में रूपांतरण प्रक्रिया की दक्षता की प्रतिशतता की गणना कीजिये. 1 bp का आण्विक भार = 660.

उत्तर: _____%

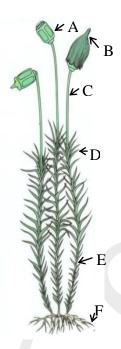
33.(2 अंक) मान लीजिये की सूत्रकणिका के DNA का आण्विक 9.9 x 10⁶ है. ऐसे कितने प्रोटीन इस जीनोम से बनाए जा सकते हैं जो इस DNA के अनितव्यापी (नॉन-ओवरलैपिंग) क्रमों से बनेंगे? (ऐसा मान लीजिये की सभी न्युक्लियोटाइड प्रोटीन बनाने में भाग लेंगे)

(जहाँएक प्रोटीन का औसत आण्विक भार 30,000; अमीनो अम्ल का माध्य आण्विक भार 100 और न्युक्लियोटाइडका औसत आण्विक भार 330 है.)

उत्तर:	

34.(2 अंक) नीचे फिनाइलकीटोनूरिया (PKU) बीमारी के विषय कुछ जानकारी दी गई है. फिनाइलएलानीन (Phe) का विखंडन करने वाले एंजाइम, फिनाइलएलानीन हाइड्रोक्सिलेज (PAH), के विभिन्न प्रकारों का निर्माण P और Q अलील्स करते हैं. फिनाइलएलानीनकी उच्च सान्द्रता के कारण फिनाइलकीटोनूरियाहोता है.

जीनोटाईप	PAH क्रियात्मकता	Phe की सांद्रता	PKU बीमारी
PP	100%	60 uM	No
PQ	30%	120 uM	No
QQ	0.3%	600 ~ 2400 uM	Yes


नीचे दी गई जानकारी के आधार पर PAH की क्रियात्मकता के संबंध में अलील P और Q के बारे में कौन सा कथन सही है? उपयुक्त बॉक्स के सामने (🗸) का निशान लगाएं.

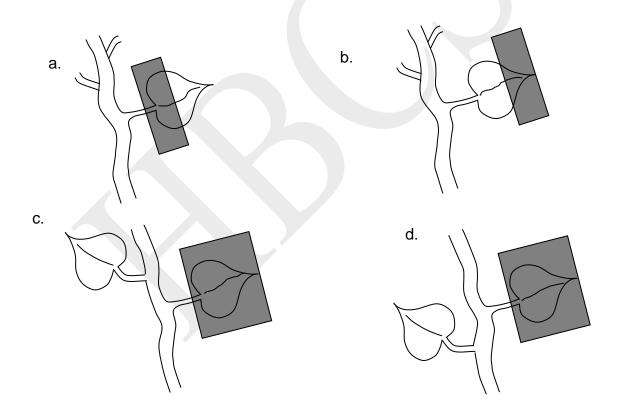
- a. P, Q के ऊपर प्रभावी है.
- b. Q, P के ऊपर प्रभावी है.
- c. P, Q के ऊपर अपूर्ण प्रभाविता दर्शाता है.
- d. Q, P के ऊपर अपूर्ण प्रभाविता दर्शाता है.

a.	b.	c.	d.

पादप विज्ञान (14 अंक)

35. (4 अंक) नीचे दिया गया चित्र मॉस पौधे (ब्रायोफाइट) के विभीन भागों को दर्शाता है जो A से F तक इंगित हैं.

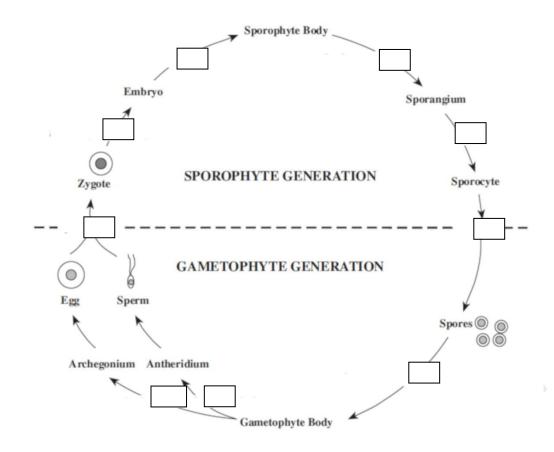
(A) तालिका 1 को पौधे के हिस्सों A-F की प्लॉयडी स्तर इंगित कर पूर्ण करें. (केवल पूर्णतः सही कतार को अंक दिए जायेंगे)


	तालिका 1
प्लॉयडीस्तर	पौधे के हिस्से
Haploid (n)	
Diploid (2n)	

(B) तालिका 2 में दिए गए कथनों का विश्लेषण कर उपयुक्त बॉक्स में (🗸) निशान लगाकर बताये की वे सही हैं या गलत.

तालिका 2		
कथन	सही	गलत

I.	हिस्से A और D प्रकाश संश्लेषणी हैं.	
II.	हिस्सा F, एककोशकीयऔर अशाखित है.	
III.	हिस्सा C, रंध्रों की उपस्थिति दर्शाता है.	
IV.	लैंगिक प्रजनन की संरचनायें हिस्से A में पाई जाती है.	


36. (2 अंक) काकल्बर (Cocklebur) एक अल्प प्रदीप्ति काल वाला पौधा है जिसका क्रांतिक काल 15 घंटे है. इन पौधों में, पत्तियों को अनुत्प्रेरित प्रदीप्ति काल दिखाने पर पुष्पन सक्रिय रूप से अवरूद्ध हो जाता है, जबिक पत्तियों को उत्प्रेरित करने वाला प्रदीप्ति काल दिखाने पर पुष्पन हार्मोन का संश्लेषण होता है जो पौधे के तनों से शिखर की तरफ गमन करता है.निम्न में से किस दशाओं में पुष्पन होगा? (ध्यान दें कि चित्र में दिखाए गए काले रंग के पट्टे दिनभर पत्तियों के हिस्से को ढँक कर रखते हैं.)

उपयुक्त बॉक्स के सामने 🖊) निशान लगाएं.

दशाएं	पुष्पन होगा	पुष्पन नहीं होगा
a.		
b.		
c.		
d.		

37. (3 अंक)किसी पौधे का जीवन चक्र, विभिन्न अवस्थाओं में अर्धसूत्री, समसूत्री विभाजन और निषेचन के बाद वृद्धि और विकास से परिलक्षित होता है. नीचे दिखाया गया चित्र एक टेरिडोफाइट पौधे के अगुणित-द्विगुणित (हैप्लोडिप्लान्टिक) जीवन चक्र को निरूपित करता है. इस चित्र में अलग अलग बक्सों में अर्धसूत्री विभाजन के लिए A, समसूत्री विभाजन के लिए B और निषेचन के लिए C इस प्रकार से लिखिए जो सही जीवन चक्र को दर्शाता है. (बीजाणुद्धिद और युग्मकोद्धिद प्रत्येक पीढ़ियों के पूर्ण रूप से सही प्रतेक उत्तर को 1.5 अंक दिए जायेंगे)

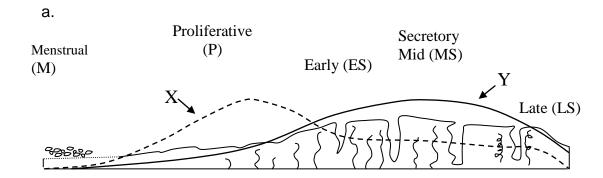
- 38. (3 अंक)श्वसनीय पौधों के तीन प्रकार के ऊतकों/हिस्सों को नीचे सूचीबद्ध किया गया है:
 - M. वृद्धि करने वाली पत्ती की कोशिकाओं का श्वसन
 - N. परिपक्व नींबू के फल का श्वसन
 - O. अंकुरित हो रहे सरसों के बीजों का श्वसन

मुक्त हो रही CO_2 और उपयोग मे लाई जा रही O_2 के एक ही समय पर मापन करने से प्राप्त अनुपात को श्वसन गुणांक (RQ) कहते हैं. RQ इस बात की जानकारी दे सकता है कि श्वसन प्रक्रिया में उपयोग में लाया गया तत्व (सबस्ट्रेट) किस प्रकार का है और श्वसन प्रक्रिया के पूर्ण होने की तुलनात्मक दर कितनी है. इसे हम एक संतुलित समीकरण से भी दर्शा सकते हैं. इस प्रकार के तीन समीकरण नीचे दिए गए है:

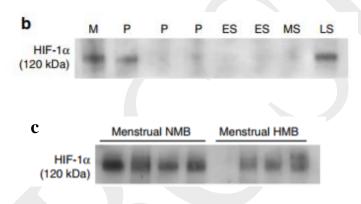
I]
$$C_6H_8O_7 + 4.5O_2 \rightarrow 6CO_2 + 4H_2O$$

	II]	$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$
	III]	$C_{57}H_{104}O_6 + 36.5O_2 \rightarrow 3.625 C_{12}H_{22}O_{11} + 13.5CO_2 + 12.125H_2O_{11}$
	पौधों के	न्न विभिन्न श्वसनीय उत्तकों (M - O) का मिलान उपयुक्त श्वसनीय प्रक्रिया/ओं (I – III) से कराएं.
M	:	
N:		
O:		
39	9.	(2 अंक)पालक में प्रकाश संश्लेषण के एक प्रयोग में निम्न 4 समूह तैयार किये गए.
	समूह P	:पालक से अखण्ड हरित-लवक अलग कर लिए गए. तब अखण्ड हरित-लवकके मिश्रण में NADP और
	ADP f	मेला कर मिश्रण को कुछ समय के लिए प्रकाश में रखते हैं.बाद मे इस मिश्रण से क्लोरोफ़िल को प्रमुख रूप
	से निका	लते हैं औरअँधेरे में ¹⁴ CO ₂ की उपस्थिति में रख देते हैं.
	समूह Q	:यह समूह P के जैसा ही है लेकिन NADP और ADP नहीं है.
	समूह R	:अखण्ड हरित-लवक, NADP और ADP के मिश्रण को $^{14}\mathrm{CO}_2$ की उपस्थिति $$ के साथ प्रकाश में रखते हैं
	समूह S	:यह समूह R के जैसा ही है लेकिन अँधेरे में रखा जाता है.
	निम्नलि	खित ¹⁴ CO ₂ की स्थिरीकृत मात्रा (counts/min) को ऊपर दिए गए प्रत्येक समूह से मिलाएं और नीचे दिए
	गए रिक्त	ह स्थानों को भरें:
	i. 9000	ii. 20, 000 iii.1,34,000 iv.2,00,000
	उत्तर:	
	समूह P	:
	समूह Q):
	समूह R	.i
	समूह S	:
	जंतु वि	ज्ञान (9 अंक)

40. (2 अंक) अति-वायु संचार (हाइपर वेंटीलेशन) और श्वास निरोधन (ब्रीद रिटेंशन) के दौरान होने वाले जैव-रासायनिक परिवर्तनों का पूर्वानुमान लगाया जा सकता है. सामान्य दशा में 4 मापदण्डों के स्तर दर्शाए गए हैं.अति-वायु संचार (i) और श्वास निरोधन (ii) के दौरान होने वाले इन परिवर्तनों के समक्ष घटना, बढ़ना या अपरिवर्तित लिखकर इंगित करें. (केवल सम्पूर्ण रूप से सही कतार को अंक दिए जायेंगे)


	рН	kPa	kPa	mmol/L
		pCO ₂	pO_2	HCO ₃
सामान्य	7.4	4.49	16.5	20.9
अति-वायु संचार				
श्वास निरोधन				

- 41. (2.5 अंक) Cambarus aculabrum अविकल्पी रूप (ऑब्लिगेट) से गुफाओं में रहने वाली क्रेफिश की एक प्रजाति है.यह कई ऐसी विचित्र लक्षणों को दर्शाती है जिसका अनुकूलनीय महत्व है. निम्नलिखित में से कौन सा/से प्रेक्षण इन जानवरों में देखे जाने की संभावना है? उपयुक्य बॉक्स में (✔) का निशान लगाएं.
- i. शरीर की रंजकता (पिगमेंटेशन) में अत्यधिक कमी.
- ii. पूर्ण विकसित और बढ़ी हुई आँखे.
- iii. अत्यधिक विकसित संवेदी अंग जैसे श्रृंगिका (एंटिना).
- iv. अल्प-विकसित चलने वाले (एम्बुलेटरी) उपांग (अपेंडेज).
- v. घटी हुई उपापचयी दर.


लक्षण	देखे जाने की संभावना	ना देखे जाने की संभावना
i.		

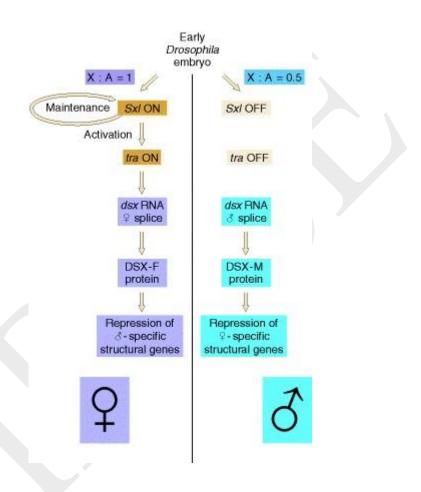
ii.	
iii.	
iv.	
V.	

- 42. (2.5 अंक) मादाओं के जनन तंत्र में हॉर्मोन का श्रावण क्रमिक (सिक्वेन्सियल) बदलाव लाता है. मादाओं में मासिक-धर्म, कॉर्पस ल्यूटियम के क्षरण का द्योतक है जो अण्डाशय के अन्तःस्तर (एंडोमेट्रियम) में एक दाहक प्रतिक्रिया उत्पन्न करता है जिसके बाद रक्त स्त्राव होता है. मासिक-धर्म में होनेवाले रक्त स्नाव में अव-ऑक्सी उत्प्रेरक कारक (HIF) की संभावित भूमिका कई वर्षों से प्रतिपादित है. अव-ऑक्सी दशाओं में, HIF प्रोटीन की α-इकाई,β-इकाई से बंध करउन वृद्धि कारकों के प्रतिक्रियन को उत्प्रेरित करता है जो चोटिल उत्तकों के स्वस्थ होने में प्रमुख भूमिका निभाते हैं.

एक अध्ययन में, सामान्य मासिक-धर्म रक्त स्नाव (NMB) और अत्यधिक मासिक-धर्म रक्त स्नाव (HMB) वाली मादाओं में अव-ऑक्सी अवस्था और HIF के स्तर के प्रभाव का अध्ययन किया गया. इससे प्राप्त हुए वेस्टर्न ब्लॉट के परिणाम नीचे दिखाए गए हैं.

उपयुक्त बॉक्स के समक्ष 🗹)का निशान लगा कर इंगित करें की प्रत्येक कथन सही है या गलत?

- a. ऎसी संभावना है की अव-ऑक्सी अवस्था वाहिका संकीर्णन (वैसोकंसट्रिकन) बढ़ाती है जिससे चोटिल स्थान से रक्त की हानि रोकने में मदद मिलती है.
- b. वक्र X और Y क्रमशः प्रोजेस्टेरान औए इस्ट्रोजेन के स्तर जो इंगित करते हैं.
- c. अव-ऑक्सी अवस्था संभवतः स्नावित (सेक्रीटरी) दशा के अंत की और मासिक-धर्म (मेन्स्ट्रुअल) दशा के दौरान पाई जायेगी.
- d. ऐसा संभव है कि HMB मादाओं में PHD का स्तर बढ़ा हुआ हो.
- e. HMB मादाओं की तुलना मे NMB मादाओं के अन्तःस्तर उत्तकों में पिमोनीडाजोल का रंजन(स्टेनिंग) कम होगा.


कथन	सही	गलत

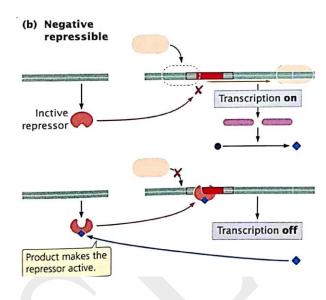
a.	
b.	
c.	
d.	
e.	

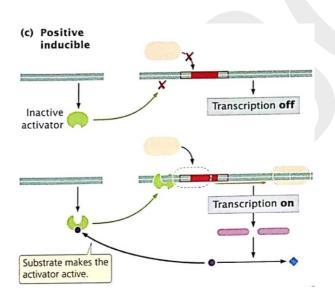
- 43. (2 अंक) एक ऐसी काल्पिनक दशा का पर विचार कीजिए जहाँ पृथ्वी पर रहने वाले स्तनधारी CO_2 से भरेहुए वातावरण में रह रहे हैं और CO_2 अन्दर खींचकर O_2 बाहर निकालते है. इस जानवर ने उद्विकास के दौरान रक्त में CO_2 और O_2 के संवहन के लिए क्रमशः P और Q नामक वर्णक (पिगमेंट) प्राप्त कियेहैं. निम्निखित में से कौन सा संरचनात्मक गुण इस वाहक प्रोटीन के लिए उद्विकास के रूप से अनुकूल है? उपयुक्त बॉक्स/बक्सों पर (\checkmark) निशान लगाएं.
- a. P की CO2 के प्रति सादृश्यता (एफीनिटी) pH बढ़ने के साथ घटेगी.
- b. Q की O2के प्रति सादृश्यता pH बढ़ने के साथ बढ़ेगी.
- c. P की CO2के प्रति सादृश्यता pH बढ़ने के साथबढ़ेगी.
- d. Q की O_2 के प्रति सादृश्यता pH बढ़ने के साथ घटेगी.
- e. P की CO2 के प्रति सादृश्यता pH घटने के साथ घटेगी.
- f. Q की O_2 के प्रति सादृश्यता pH बढ़ने के साथ घटेगी.

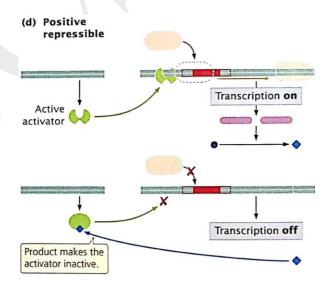
a.	b.	c.	d.	e.	f.

44. (2.5 अंक) *Drosophila* में लिंग निर्धारण X-गुणसूत्र और सम-गुणसूत्र (ऑटोसोम) के अनुपात (X:A) पर आधारित होता है. हाँलािक, Y-गुणसूत्र लिंग निर्धारण में जरूरी नही है पर शुक्राणुजनन की प्रक्रिया के लिए आवश्यक है. नीचे दिया गया चित्र *Drosophila* में लिंग निर्धारण प्रक्रिया के आण्विक पथ का निष्कर्ष दर्शाता है.


SxIजीन का सिक्रयण,प्रतिक्रियन (ट्रांसिक्रिप्सन) कारक प्रोटीन द्वितय (डाईमर) NUM-NUM के द्वितय से शुरू होता है.NUM प्रोटीन एकलक (मोनोमर) का प्रतिक्रियन X-गुणसूत्र से जबिक मिलते जुलते अन्य प्रोटीन DEM का प्रतिक्रियन सम-गुणसूत्र पर उपस्थित जीन से होता है. NUM-DEM या DEM-DEM द्वितयप्रतिक्रियन कारक की तरह काम नहीं करते हैं. दी गई सूचना के आधार पर निम्निलिखित दशाओं में Drosophila के भ्रूणों के लिंग और उपजाऊपन (फर्टिलिटी) का अनुमान लगाएं और दी गई तालिका में उपयुक्त बॉक्सपर (✔) का निशान लगाएं.


लैंगिक दर्शरूप


			XII 1 10 3 XIV-1			
लिंगगुणसूत्र	सम-गुणसूत्र	अन्य उत्परिवर्तन	उपजाऊ	बाँझ	उपजाऊ	बाँझ
			मादा	मादा	नर	नर
XX	AA	tra / tra				
XY	AA	NUM प्रोटीन के एकलकका अधिक उत्पादन				
XO	AA	DEM प्रोटीन का अधिक उत्पादन				
XY	AA	tra / tra				
XYY	AAA	NUM प्रोटीन के एकलकका अधिक				
		उत्पादन				


- 45. (4 अंक) ऑपेरॉन के नियमन के चार विभिन्न तरीके इस प्रकार से हैं:
 - a. ऋणात्मक उत्प्रेरक (NI)
 - b. ऋणात्मकदमनकारी (रिप्रेसिबल) (NR)
 - c. धनात्मकउत्प्रेरक(PI)
 - d. धनात्मकदमनकारी (PR)

नीचे दिया गया चित्र इन तरीकों की क्रियाविधियों कासार रूप है. एक जीवाणु कोशिका द्वारा नीचे दी गई दशाओं में जिस नियमन क्रियाविधि/यों का भली भांति उपयोग होगा उसकी पहचान करें और रिक्त स्थानों में सही वर्ण/वर्णों को लिखें.

वहाँ से लेना पसंद करती है.
उत्तर:
दशा 2: कोई अणु जो वातावरण में उपस्थित रहने पर कोशिका की वृद्धि को ऋणात्मक रूप से प्रभावित कर सकता है,
लेकिन कोशिका के विशेष एंजाइम्स इस अणु को अहानिकारक उत्पाद मे विखंडित कर सकता है.
उत्तर:
दशा 3: कोई अणु जो किसी आवश्यक जैव-रासायनिक पथ का उप-उत्पाद (बाइ-प्राडक्ट) है, अगर यह कोशिका के
अन्दर एक स्वीकृत सीमा से ऊपर तक इकट्ठा होता है तो कोशिका की वृद्धि पर बुरा असर डालता है.
उत्तर:
दशा 4: कोई अणु अगर अधिकता में बन जाता है तो उसे दूसरे अणु में परिवर्तित करके भविष्य में उपयोग में लाया जा
सकता है.
उत्तर:
46. $(2+1.5+1=4.5)$ अंक) एक प्रयोग में, एक हीं जीवाणु की प्रजाति के तीन प्रकार उपयोग में लाये गए.
प्रकार 1 phe ⁺ trp ⁺ met ⁻ his ⁻ है
प्रकार 2phe ⁻ trp ⁻ met ⁺ his ⁺ है
प्रकार 3phe ⁺ trp ⁺ met ⁺ his ⁺ है

दशा 1: कोशिका अणु P को संश्लेषित कर सकती है लेकिन अगर अणु P वातावरण मे उपस्थित है तो कोशिका इसे

ये तीनों प्रकार दो अलग अलग माध्यम P और Q फैलाए गए. P एक पूर्ण माध्यम है जिसमे वृद्धि के लिए आवश्यक सभी तत्व हैं. Q एक अपूर्ण माध्यम है जिसमे कार्बन स्रोत के लिए केवल शर्करा है और आवश्यक खनिज़ तत्व हैं.

(A) इन माध्यमों में जीवाणु की वृद्धि होगी (+ से) या नहीं (- से) इंगित करिए. (केवल पूर्ण रूप से सही उत्तर वाली कतार को हीं अंक दिए जायेंगे)

माध्यम	प्रकार 1	प्रकार 2	प्रकार 3
P			
Q			

जीवाणुओं के बीच जीन स्थानांतरण के अध्ययन के लिए निम्न में से कौन सा प्रायोगिक तरीका सही है? उपयुक्त बॉक्स के समक्ष (🗸) का निशान लगाएं.

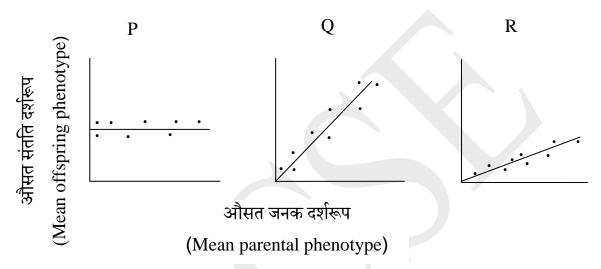
- a. जीवाणु के प्रकार 1 और 2 को मिला कर उन्हें अपूर्ण माध्यम में वर्धित करिए.
- b. जीवाणु के प्रकार2और3को मिला कर उन्हें पूर्ण माध्यम में वर्धित करिए.
- c. शुरू में जीवाणु के प्रकार 1 और 2 को मिलाने के बाद प्रकार3 के जीवाणु को मिला कर कोशिकाओं को पूर्ण माध्यम में वर्धित करते हैं.
- d. जीवाणु के प्रकार 1 और 2 को मिला कर उन्हें अपूर्ण माध्यम में वर्धित करते हैं.

a.	b.	c.	d.

(B) निम्न में से कौन सा परिणाम इस पूर्वानुमान को सही साबित करेगा कि जीन स्थानांतरण हुआ? उपयुक्त बॉक्स के समक्ष (✔) का निशान लगाएं.(भाग A सही होने पर हीं इस भाग को अंक दिए जायेंगे)

- i. प्रकार 1 *phe* ⁺ *trp* ⁺ *met* ⁺ *his* ⁺बन गया.
- ii. प्रकार 2 phe ⁺ trp ⁺ met ⁺ his ⁺बन गया.
- iii. प्रकार 3 phe ⁻ trp ⁻ met ⁻his ⁻बन गया.
- iv. इन तीनों प्रकारों में से कोई भी एक प्रकार $phe^-trp^-met^-his^-$ बन गया.

- a. केवल i
- b. केवल ii
- c. i या ii
- d. iii या iv


a.	b.	c.	d.

47. (2 अंक) Drosophila melanogaster की एक आँख में लगभग 700 नेत्रांशक (ओमैटीडिया) होते हैं जो आँखों को एक अंडाकार आकर देते हैं. बार उत्परिवर्तकों (Bar mutants, B) में नेत्रांशकों की कमी हो जाती है और विषमयुग्मजी अवस्था में आँखे सेम (बीन) के आकार की और समयुग्मजी अवस्था में एक दरार जैसी रचना बनती है. बार जीन X-सहलग्न है. उत्परिवर्तक अलील (B), सामान्य अलील (B) पर प्रभावी है. Drosophila एक अप्रभावी अलील (B) भी होता है जो जीव की भ्रूणीय अवस्था की शुरुआत के दौरान घातक होता है. इस जीन का सामान्य अलील B0 भिराठिक एक झुण्ड में ऐसा एक अलील B1 गुरु पर बार जीन से 20cM दूरी पर स्थित है. निम्नलिखित संकरण कराये गए:

300 सन्तितयों का विश्लेषण किया गया. ऊपर दी गई जानकारी के आधार पर विभिन्न दर्शरूप (फीनोटाइप) की संभावित सन्तितयों की संख्या और उनके लिंग की गणना कीजिये और उनके मानों को तालिका के बक्सों में भिरये.

	बार आँखें	सामान्य आँखें
नर		
मादा		

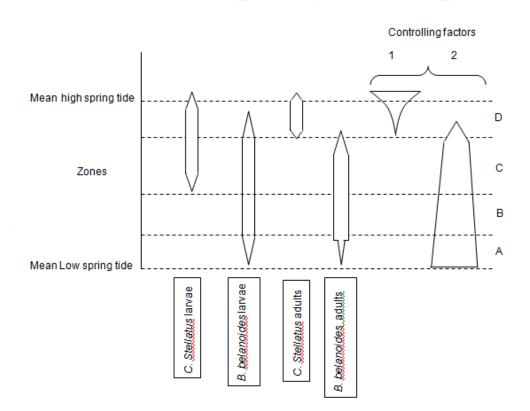
48. (2 अंक) मनुष्य की आबादी में पाए जाने वाले कई लक्षण बहुजीनी (पॉलीजीनी) होते हैं. बहुजीनीहोने के साथ साथ ये लक्षण प्रायः कई वातावरणीय कारकों से भी प्रभावित होते हैं. जीनी अंतरों के कारण पाए जाने वाले कुल दर्शरूपी बदलावों के अनुपात को वंशागितत्व (हेरिटेबिलीटी) कहते हैं. वंशागितत्वका मापन जनकों और सन्तितयों के दर्शरूपों की तुलना करके की जा सकती है. नीचे तीन अवस्थाएं दी गई हैं:

इन रेखाचित्रों को संततियों के दर्शरूप पर वातावरण के बढ़ते हुए प्रभाव के क्रम मे व्यवस्थित करें. (केवल पूरी तरह से सही क्रम को अंक दिए जायेंगे.)

उत्तर:	<		
J (1).		•	

पारिस्थितिकी (10.5 अंक)

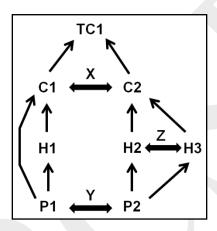
49. (2 अंक) रेडियोधर्मी कार्बन 14 C कुल वायुमंडलीय CO_2 का एक बहुत छोटा भाग बनाता है. वायुमंडल में प्रत्येक 10 लाख सामान्य स्थिर 12 Cकार्बन परमाणु के लिए केवल एक रेडियोधर्मी कार्बन परमाणु है. ये जानते हुए कि 14 C की अर्ध-आयु 5600 वर्ष है, 11,200 वर्ष पुराने जीवाष्म कंकाल में 14 C: 12 C का अनुमानित अनुपात कितना होगा?


- 50. (2 अंक)नवीकरणीय ऊर्जा,जीवाष्म ईंधन की तुलना में वातावरण के लिए ज्यादा लाभदायक है. फिर भी यह पारिस्थिकी तंत्र पर कुछ प्रभाव डालता है. भारत के पश्चिमी घाट में, वायु ऊर्जा को उपयोग में लाने के लिए कई टर्बाइन लगाए गए हैं. जब वैज्ञानिकों ने कई वर्षों बाद इस क्षेत्र का सर्वेक्षण किया तो उन्हें पंखे जैसे गले वाली छिपकिलयाँ जोएक प्राकृतिक रहवासी है में कई बदलाव मिले.लैंगिक परिपक्वता तक पहुँचने परइस प्रजाति के नरों के गले मेंएक रंग बिरंगा पट्टा दिखाई देता है.वैज्ञानिकों ने पाया कि
 - (i) इन पट्टों के रंग अब फीके पड़ गए है.
 - (ii) इस क्षेत्र में इन छिपकलियों का घनत्व बढ़ गया है और
 - (iii) इन छिपकलियों के पास जाने पर उनमे भाग जाने की प्रवृत्ति कम हो गई है.

ऐसा इंगित करिए की नीचे दिया गया प्रत्येक कथन इन निष्कर्षों का कारण है या नतीजा. उपयुक्त बक्सों पर (🗸) का निशान लगाएं.

- a. प्रेक्षण (i) और (ii) ऐसा संकेत देते हैं की पट्टों का फीका पड़ा रंग प्रकृति में छुपाने में मदद करता है और उनके उत्तरजीविता के मौकों को बढ़ा देता है.
- b. प्रेक्षण (iii) यह संकेत देता है कि नये वातावरण में छिपकलियों पर परभक्षी का दबाव कम हो गया है.
- c. फीका पड़ा रंग [प्रेक्षण (i)] शिकार की कमी से भी हो सकता है जिसके शरीर में कैरोटिनोयड वर्णक पाए जाते है.
- d. प्रेक्षण (ii) स्पष्ट रूप से संकेत देता है कि रहवास क्षेत्र में पहले की तुलना में ज्यादा शिकार उपलब्ध हैं.

कथन	कारण/परिणाम	कारण नहीं है/परिणाम
a.		
b.		
c.		
d.		

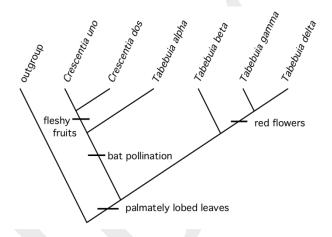

51. (3 अंक) विभिन्न वातावरणों में अंतर-प्रजातीय संबंधों को समझने के लिए, बर्नाकल (Barnacle) की दो प्रजातियों *C. stellatus* and *B. balanoides* पर अंतर-ज्वारीय क्षेत्र में अध्ययन किये गए. इससे प्राप्त परिणामों को पतंग चित्र (kite diagram) में नीचे दर्शाया गया है. यह चित्र बर्नाकल की दो प्रजातियों द्वारा अलग अलग अवस्थाओं में अधिकृत क्षेत्रों और उन पर कार्य कर रहे नियामक कारकों (कंट्रोलिंग फैक्टर) को दर्शाता है.

पतंग चित्र का अध्ययन करते हुए निम्नलिखित विवेचनाओं को उचित अंचलों (ज़ोन)(A-D) में अंकित करिए: (केवल प्रत्येक विवेचनाओं (I-VI)के पूर्ण रूप से सही उत्तर को अंक दिए जायेंगे.) I. प्रतिस्पर्धात्मक बहिष्करण (कॉम्पीटीटिव एक्सक्लूजन) का अंचल: II. B. balanoides की रियलाइज्ड निश: _____ III. उच्चतम अंतर-प्रजातीय प्रतिस्पर्धा (इंटर-स्पेसीज कॉम्पीटीसन)का अंचल: IV. सूख जाना (डेसीकेसन) एक प्रमुख नियामक कारक होना: V. B. balanoides पर परभक्षी का चयनात्मक (सेलेक्सन) दबाव: VI. C. stellatus की पोटेंसियल निश: 52. (1.5 अंक) Cryphonectria endothia कवक चीन के चेस्टनट वृक्षों को संक्रमित कर सकता है. लेकिन जब वह वृक्ष को संक्रमित करता है तो विभिन्न प्राकृतिक कारक उसकी वृद्धि को रोकते हैं. यही कवक अमेरिका में पायी जाने वाली दूसरी चेस्टनटप्रजाति को पंछियों द्वारा वृक्ष में बनाए गए छिद्रों में कवकजाल फैलाकरसंक्रमित करता है. तनों में कवक की वृद्धि के कारण कवकजाल के तनों को घेर लेता है जिससे वृक्ष अंततः मृत हो जाता है. यदिCryphonectria endothiaएक विशेष विषाणु से संक्रमित हो जाता है तो विषाणु RNA की मात्रा को बदल कर कवक से चेस्टनट वृक्ष होने वाली क्षित को रोक देता है . चेस्टनटवृक्ष, कवक की प्रजाति और विषाणु के मध्य किस प्रकार की अन्योंयाक्रियायें हो रही हैं? नीचे दिए विकल्पों से चयन कर रिक्त स्थान में उचित वर्ण को लिखें. i. Cryphonectria endothiaऔर चीन के चेस्टनटवृक्ष: ii. Cryphonectria endothiaऔर अमेरिका के चेस्टनटवृक्ष: _____ iii. Cryphonectria endothia और विषाणु: विकल्प: a. आथितेय-परजीवी

b. आथितेय-रोगजनक

- c. सहभोजिता
- d. असहकारिता (Amensalism)
- e. सहजीविता
- 53. (2 अंक) दिए गए प्रवाह चित्र (फ्लो-चार्ट) में पोषण स्तरों कीऊर्ध्व इंटर-लिंकिंग को उत्पादकों (P), शाकाहारियों (H), द्वितीयक मांसाहारी (C) और तृतीयक मांसाहारी (TC) से दिखाया गया है. विशेष पोषण स्तर के अन्दर हो रही क्षैतिज अन्योंयक्रियाओं को भी X, Y और Z अन्योंयक्रियाओंसे अंकित किया गया है.

उपयुक्त बॉक्स के समक्ष 🗹) लगाकर इंगित करें की निम्नलिखित प्रत्येक कथन सही है या गलत.

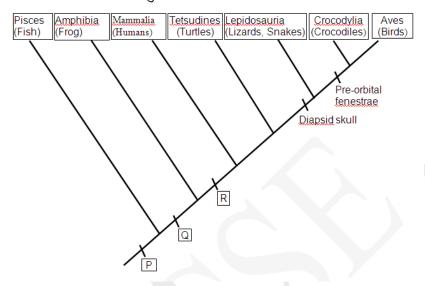

- a. X उन अन्योंयक्रियाओंका द्योतक है जो मुख्य रूप से प्रजातियों के बीच स्रोतों के लिए अंतर-प्रजातीय प्रतिस्पर्धा को दर्शाता है.
- b. Y उन अन्योंयक्रियाओंका द्योतक है जो किसी पोषण स्तर के अन्दर दो प्रजातियों के बीच स्थान के लिए प्रतिस्पर्धा को दर्शाता है.
- c. C2 का H2 या H3 प्रति लगाव यह तय करेगा कि H2 और H3 के मध्य किस प्रकार की और किस तीव्रता की अन्योंयाक्रिया (Z) होगी.
- d. इस खाद्य श्रृंखला में TC1 एक सच्चा मांसाहारी है जबिक C1 और C2 सर्वाहारी है.

कथन	सही	गलत
a.		

b.	
c.	
d.	

BIOSYSTEMATICS (6 अंक)

54. (2 points) Bignoniaceaeकुल में निलका रूपी (ट्युबुलर) सजावटी फूलों वाले पौधे होते हैं. जातियाँ (जीनस) Crescentia और Tabebuia दोनों इस कुल के सदस्य है. इन दोनों जातियों के पौधों का वर्गीकरण नीचे दिखाया गया है.


उपयुक्त बॉक्स के समक्ष 🗹) लगाकर इंगित करें की निम्नलिखित प्रत्येक कथन सही है या गलत.

- a. Tabebuiaकी सभी प्रजातियाँ मोनोफाईलेटिक हैं.
- b. चमगादड़ों से परागण केवल Crescentia प्रजाति का विशिष्ट गुण है.
- c. बहिःसमूह (आउटग्रुप) प्रजातियाँ या तो संयुक्त (कंपाउंड) या लोब्ड पत्तियाँदिखाएंगी.
- d. T. beta, T. delta की तुलना में T. alpha के ज्यादा नजदीक है.

कथन	सही	गलत
a.		

b.	
c.	
d.	

55. (2 अंक) क्लेडोग्राम के रूप में जंतु का वर्गीकरण नीचे दिखाया गया है.

उपयुक्त बॉक्स के समक्ष (🖍) लगाकर इंगित करें की निम्नलिखित कथन सही है या गलत.

- a.Tetsudines, Lepidosauria, Crocodylia एक साथ मोनोफाईलेटिक टैक्सान सरीसृप (रेप्टीलिया) बनाते है.
- b. समतापी जीव (homeotherms)पॉलीफाईलेटिक टैक्सानबनाते हैं.
- c. लक्षण 'Q' शायद एम्नीयोटिक अण्डे होना है.
- d. टैक्सानजिसमे स्तनधारी, सरीसृप, पंछी और उनके सबसे नजदीकी पूर्वज हैं वो मोनोफाईलेटिक क्लेड है.

कथन	सही	गलत
a.		
b.		
c.		
d.		

56. (2 अंक) किसी पुरातत्विवद द्वारा खोजे गए जीव का रेखाचित्र नीचे दिया गया है.

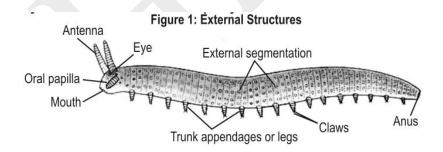
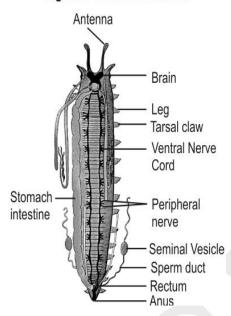



Figure 2: Internal Structures

इस जीव के शारीरिक और आतंरिक रचनाओं की व्याख्या नीचे तालिका में की गई है.

Phyla/Class	Worm- like body	Organ differentiation	External Body segmentation	Nerve cord	External legs	Circulatory system	Vertebral column
Nematoda	Yes						
Annelida	Yes	Yes	Yes	Ventral			
Arthropoda		Yes		Ventral	Yes	Open	
Reptilia		Yes		Dorsal	Yes	Closed	Yes

यह जीव संभवतः इनके बीच की कड़ी है:

(रिक्त स्थानों में सही संघ/वर्ग भरिये)

उत्तर: संघ/वर्ग औरसंघ/वर्ग .

****** खंड B समाप्त******