Instructions for students

- Write your name and roll no. at the top of the first pages of all problems.
- This examination paper consists of 34 pages of problems including answer boxes.
- You have 3 hours to complete all the problems.
- Request the supervisor to provide you with rough sheets for rough work.
- Use only a pen to write the answers in the answer boxes. Anything written by a pencil will not be considered for assessment.
- All answers must be written in the appropriate boxes. Anything written elsewhere will not be considered for assessment.
- For calculations, you must show the main steps.
- Use only a non-programmable scientific calculator.
- For objective type questions: Mark **X** in the correct box. Some of the objective questions may have more than one correct choice.
- Values of fundamental constants required for calculations are provided on page 2.
- A copy of the Periodic Table of the Elements is provided at the end of the paper.
- Do not leave the examination room until you are directed to do so.
- The question paper will be uploaded on the HBCSE website by 4th February 2009.

© Homi Bhabha Centre For Science Education Tata Institute of Fundamental Research V.N. Purav Marg, Mankhurd, Mumbai 400 088.

Fundamental Constants

Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Electronic charge $e = 1.602 \times 10^{-19} \text{ C}$

Molar gas constant $R = 8.314 \text{ J K}^{-1} \text{mol}^{-1}$

 $= 8.314 \text{ K Pa.dm}^3 \text{ K}^{-1} \text{mol}^{-1}$

 $= 0.082 \text{ L.atm K}^{-1} \text{mol}^{-1}$

1 atomic mass unit (1u) = 931.5 MeV/c^2

1 eV = $1.602 \times 10^{-19} \text{ J}$

Rydberg constant $R_H = 2.179 \times 10^{-18} \text{ J}$

Mass of electron $m_e = 9.109 \times 10^{-31} \text{ kg}$

Planck's constant $h = 6.625 \times 10^{-34} \text{ Js}$

Speed of light $c = 2.998 \times 10^8 \text{ ms}^{-1}$

Acceleration due to gravity $g = 9.8 \text{ ms}^{-2}$

Density of mercury = $13.6 \times 10^3 \text{ kgm}^{-3}$

Nai	me of Student Roll no.
Prob	lem 1 10 Marks
Hydı	rogen atom
	The electronic ground state of a hydrogen atom contains one electron in the first orbit.
	If sufficient energy is provided, this electron can be promoted to higher energy levels.
	The electronic energy of a hydrogen-like species (any atom/ions with nuclear charge
	Z and one electron) can be given as
	$E_n = -\frac{R_H Z^2}{n^2}$ where $R_H = Rydberg$ constant, $n = principal$ quantum number
1.1	The energy in Joule of an electron in the second orbit of H atom is
	(0.5 mark)
1.2	The energy required to promote the ground state electron of H atom to the first
	excited state is
	eV
	(1 mark)
	When an electron returns from a higher energy level to a lower energy level, energy is given out in the form of UV/Visible radiation.
1.3	Calculate the wavelength of light (nm) for the electronic transition of H atom from
	the first excited state to ground state.

In the model of hydrogen-like atom put forward by Niels Bohr (1913), the electron orbits around the central nucleus. The Bohr radius of nth orbit of a hydrogen-like species is given by

$$r = k \frac{n^2}{Z}$$
 where, k is constant

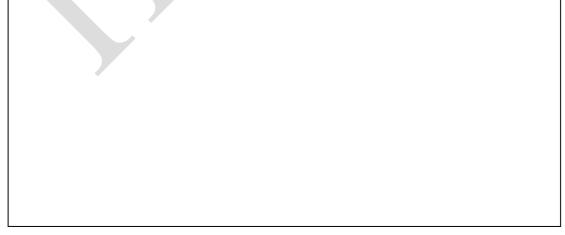
1.4 What is the principal quantum number, **n'** of the orbit of Be³⁺ that has the same Bohr radius as that of ground state hydrogen atom?

(1 mark)

- 1.5 The ratio of energy of an electron in the **ground state** Be³⁺ ion to that of ground state H atom is
 - (A) 16

(B) 4

(C) 1


(D) 8

(1 mark)

The kinetic and potential energies of an electron in the H atom are given as

K.E. =
$$\frac{1}{4\pi\varepsilon_0} \frac{e^2}{2r}$$
 and P.E. = $-\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r}$

- **1.6** Calculate the following:
 - a) the kinetic energy (in eV) of an electron in the ground state of hydrogen atom
 - b) the potential energy (in eV) of an electron in the ground state of hydrogen atom

(2.5 marks)

1.7

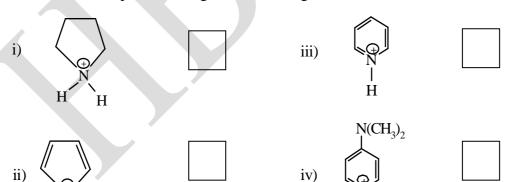
1.8

A gase	eous excited hydrogen-like species with nuclear charge	Z can emit radiations of
six dif	ferent photon energies.	
a)	The principal quantum number of the excited state is	
	(A) 6 (B) 5	
	(C) 4 (D) 3	
		(0.5 mark)
b)	It was observed that when this excited species emits	photons of energy $= 2.64$
	eV when it comes to next lower energy state. Calcul	ate the nuclear charge of
	the species.	
		(1 mark)
ioniza 24.58	ast energy required to remove an electron from a spation energy (I.E.) of the species. The experiment eV. energy required to remove two electrons from He is	
		(1.5 marks)
		(======================================

Name of Student Roll no.

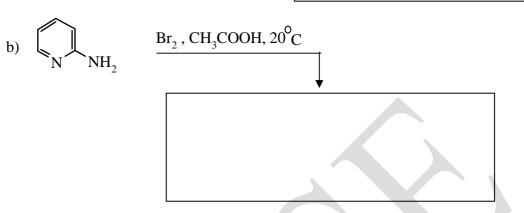
Problem 2 19 Marks

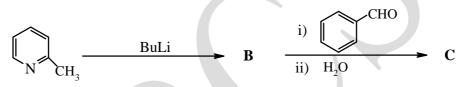
Nitrogen containing compounds

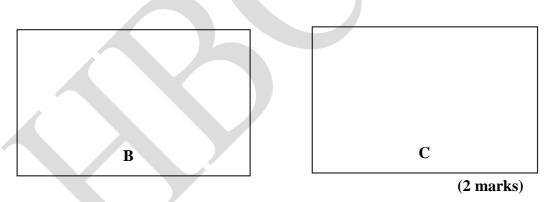

Several naturally occurring important compounds such as alkaloids, amino acids, proteins and peptides contain nitrogen. Nitrogen heterocycles in the form of pyrimidine and purine bases, are essential features of nucleic acids, which are responsible for storage of genetic information in an organism and for transmitting the same to its progeny.

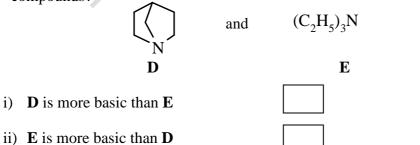
2.1 Which of the following amine/s is/are resolvable?

(1 mark)


2.2 The most acidic species amongst the following is


(2 marks)

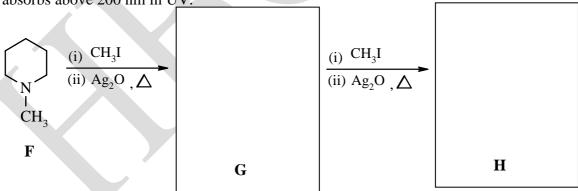

2.3 Draw the structures of the *isolable* products of the following reactions.



2.4 Identify **B** and **C** in the following reaction sequence.

2.5 Which of the following statements is true with respect to the following pair of compounds?

iii) **D** and **E** are of comparable basicity (1 mark)


Alkaloids are naturally occurring biologically active nitrogeneous compounds, isolated from plants. Structure determination of alkaloids involves a few general steps, some of which are mentioned below.

- (a) **Zeisel method:** It is used to determine the presence and number of methoxyl groups. Here an alkaloid is heated with HI at its boiling point (126°C) when methyl iodide is formed, which is absorbed in ethanolic AgNO₃ and the AgI formed is separated and weighed.
- (b) **Hoffmann exhaustive methylation method:** It is used to determine the skeleton of an alkaloid. It involves the exhaustive methylation of an amine with CH₃I followed by heating the resulting quaternary ammonium salt with moist Ag₂O when elimination takes place as represented below.

$$CH_{3}CH_{2}NH_{2} \xrightarrow{3 CH_{3}I} CH_{3}CH_{2}N(CH_{3})_{3}I \xrightarrow{Ag_{2}O} CH_{2} = CH_{2} + N(CH_{3})_{3}$$

Note: During this reaction, the less stable alkene is formed.

2.6 Identify the products 'G' and 'H' obtained in the Hoffmann exhaustive methylation and degradation of N-methylpiperidine (F) in the following sequence. Note: H absorbs above 200 nm in UV.

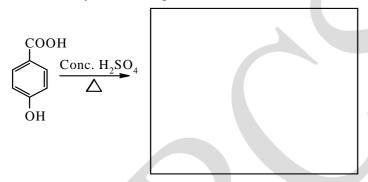
(2 marks)

Papaverine ($C_{20}H_{21}NO_4$) is an optically inactive alkaloid. Goldschmidt and coworkers established the structure of papaverine in 1888 and their work is a classic example of the application of oxidative degradation to structure determination.

2.7 Papaverine reacts with four equivalents of HI at 126°C to give papaveroline as one of the products. The formula of papaveroline is

i) $C_{16}H_{13}NO_4$

ii) C₁₆H₉NO₄


iii) $C_{16}H_{14}NO_4$

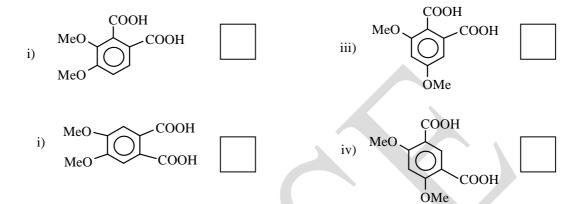
iv) $C_{16}H_{15}NO_4$

(1 mark)

Papaverine, when oxidized with hot conc. $KMnO_4$ is decomposed into smaller fragments viz; veratric acid, $C_9H_{10}O_4$ (**I**), metahemipinic acid (**J**), pyridine tricarboxylic acid (**K**) and 6,7-dimethoxyisoquinoline -1- carboxylic acid.

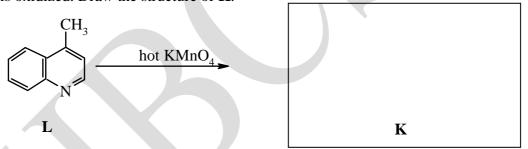
2.8 Verartic acid (**I**) is prepared from p-hydroxybenzoic acid by the following sequence. Identify the missing intermediates.

i. fuse with excessNaOH ii.dil. acid

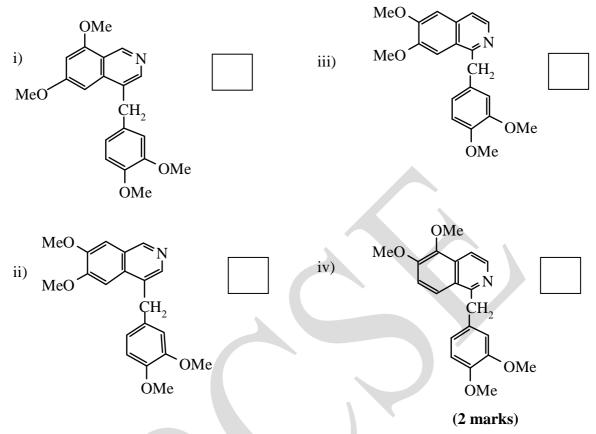

i. excess $CH_3I/NaOH$ ii. dil. acid, \triangle

Veratric acid

(3 marks)


Metahemipinic acid \mathbf{J} , $(C_{10}H_{10}O_6)$ on heating with CaO, gives veratrole, which is also formed by heating veratric acid (\mathbf{I}) with CaO. \mathbf{J} forms an anhydride on heating and forms only one monoester.

2.9 Structure of metahemipinic acid is



(1 mark)

2.10 The pyridine tricarboxylic acid **K** is produced when lepidine **L** (4-methylquinoline) is oxidized. Draw the structure of **K**.

2.11 Based on the above observations, the structure of papaverine is

Oxidation of papaverine with hot dilute $KMnO_4$ gives papaverinic acid ($C_{16}H_{13}NO_7$) which forms an oxime.

2.12 Structure of papaverinic acid is

(2 marks)

-		, , ,		
Na	ame o	f Student	Roll no.	
		_		_
Pro	blem 3	3	17 ma	rks ———
Che	mistry	y of silicon		
	Silic	on is the second most abundant element	(~27.2 %) in the earth's crust	after
	oxyg	gen (45.5 %). Carbon, silicon, germaniu	nm, tin and lead constitute th	e group 14
	of the	e periodic table. Chemistry of silicon is o	distinctly different from that of	f carbon.
	For e	example, under standard conditions CO ₂	is a gas whereas SiO2 is a cova	alent solid.
3.1	Draw	v the structures of CO_2 and SiO_2 .		
		i) CO ₂	ii) SiO ₂	
			(1.5 ma	rks)
3.2.	The	reason for the distinct difference in the p	roperties of CO ₂ and SiO ₂ is	·
			1 2 2	
	a)	carbon is more electronegative than C	and in case of SiO ₂	
		oxygen is more electronegative than s	ilicon	
	b)	carbon has small size and forms a π be	ond with good overlap whereas	s —
		silicon has larger size hence has a poo	or π overlap	
	c)	carbon has only 'p' orbitals and lacks	'd' orbitals whereas	
		silicon has 'd' orbitals		
	d)	first ionization potential of carbon is l	nigher than that of silicon	
		(1086 kJ mol ⁻¹ for C and 786 kJ mol ⁻¹	¹ for Si)	
			(1 marl	k)

the	reaction.	
with	45 kg of high grade coke in an electric furnace. Write the balar	nced equat
In a	silicon manufacturing unit, silicon is obtained by heating 100	kg of pur
	(1	mark)
d)	non-metallic character	
c)	bond strength	
b)	electronegativity	
ŕ		
a)	order in 3.4 can be explained on the basis of atomic size	
Th.		5 mark)
cate	nation tendency.	
	w significant catenation. Arrange these elements in decreasing	
Gro	up 14 elements have tendency to catenate. The first three member	
d)	carbon and fluorine have comparable atomic sizes	marks)
c)		
ŕ	silicon has 3d orbitals which form an sp ³ d ² hybrid orbitals	
b)	silicon has larger atomic size than carbon	
a)	carbon is more electronegative than silicon	
is/aı	re	
• ,		

3.7	Silic	on can be purified by converting it into volatile SiCl ₄ (b.p. 58 °C) which i									
	purif	ied by fractional distillation. SiCl4 can then be converted into Si using									
	mole	cular hydrogen. Write the balanced equations for the reactions involved.									
		(1 mark)									
	Silic	on is widely used in semiconductor industry in which the purity required is of the									
	orde	order of 1 part per billion. This can be achieved using "zone refining technique". The									
	techr	sique involves moving a heater coil across an impure Si rod.									
3.8	In zo	In zone refining, silicon is purified as									
	a)	portions of Si rod are heated and cooled so that impurities are									
		differentially evaporated									
	b)	impurities are more soluble in liquid phase than in solid									
	c)	impurities are less soluble in liquid phase than in solid									
	d)	impurities are insoluble in molten Si and can be separated									
		(1 mark)									
	The	reactivities of CCl4 and SiCl4 are different. For example SiCl4 can be easily									
	hydr	plysed and is prone to substitution reactions, whereas CCl ₄ is inert.									
3.9	The	observed difference is because									
	a)	carbon atom has smaller size hence substitution is not possible									
	b)	carbon is more electronegative than silicon									
	c)	silicon has low lying unoccupied orbitals									
	d)	C-Cl bond is stronger than Si-Cl bond									
		(1 mark)									

Silicon has high affinity for oxygen to form silicates having SiO₄ units. Silicates can have chain or cyclic structures.

3.10 Draw the structure of a cyclic silicate having structural formula of $[Si_6O_{18}]^{n-}$. Also determine the value of n. [Hint: SiO_4 can be shown as \bigwedge unit]

3.11 Draw the structure of the anion present in pyroxene (MgCaSi₂O₆).

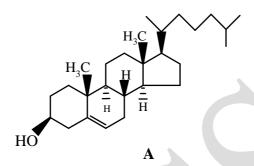
(1 mark)

Silicones are important synthetic polymers which find extensive applications due to their chemical inertness and water repelling nature. They are produced via the following reactions.

$$2 C_6 H_5 Cl + Si \frac{Cu}{370 K}$$

$$\mathbf{A} \xrightarrow{\mathbf{H}_2\mathbf{O}} \mathbf{B}$$

3.12 Identify A and the corresponding linear polymer B.


(2 marks)

Name of Student Roll no.

Problem 4 17 Marks

Natural compounds and intermediates

Cholesterol (A) is the most abundant compound from steroids in animals. It is the precursor of all other steroids. It is an important component of the cell membrane.

[Note: Thick solid wedge indicates a bond coming above the plane, while broken wedge indicates a bond below the plane]

4.1 The total number of stereoisomers possible for **A** is

a) 32

b) 256

c) 128

d) 64

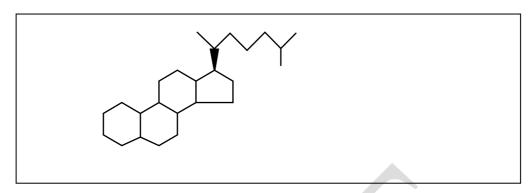
(0.5 mark)

4.2 Draw the structure of the ester of cholesterol with a fatty acid containing 16 carbon atoms with a double bond at the C_4 in E configuration.

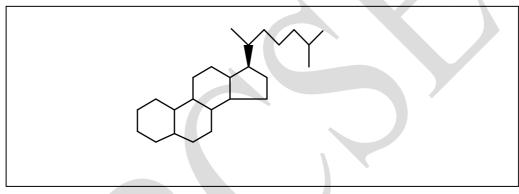
4.3 a) Complete the structure of the product, with stereochemistry, of the reaction of B_2H_6 with cholesterol in tetrahydrofuran, followed by H_2O_2 in an alkaline medium.


(1 mark)

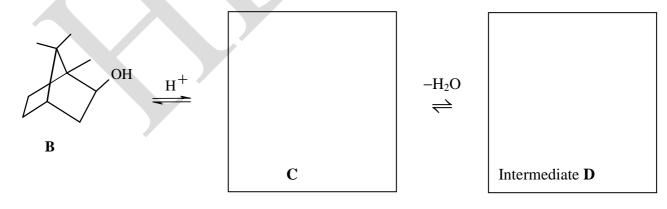
b) The 3D perspective formula of the skeleton of the steroid obtained in **a** is given below. Complete the structure of the product obtained in **a**, by placing the substituents at the appropriate places with the correct stereochemistry.

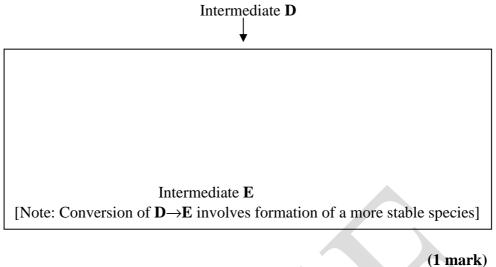

(2 marks)

- c) Complete the structures of the products (with stereochemistry) of the reaction of **A** with
- i) H₃O⁺ (room temperature)


(0.5 mark)

ii) peroxyacetic acid, CH₃COOOH


(0.5 mark)


iii) Br_2/H_2O

(1 mark)

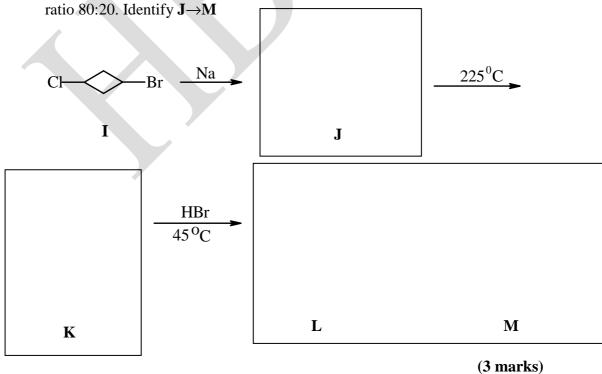
Among the natural products, terpenes are interesting due to a variety of reactions they undergo. Borneol (**B**) $C_{10}H_{18}O$, a terpene, on treatment with a Brønsted acid undergoes a reaction to form **F**, $(C_{10}H_{16})$. Identify the structures of $C \rightarrow F$.

(1 mark)

Diels-Alder reaction is an important reaction useful in the synthesis of cyclohexene derivatives. It involves the reaction of an electron rich "diene" with an electron deficient olefin referred to as "dienophile".

Two different approaches have been designed to synthesize cortisone, a steroid. These require intermediates \mathbf{G} and \mathbf{H} .

4.5 Draw the starting compounds required for the synthesis of **G** and **H** through Diels-Alder reaction.


Starting compounds for synthesis of G

(1.5 marks)

Starting compounds for synthesis of H

(0.5 mark)

4.6 I is an interesting compound. It reacts with metallic sodium to form compound **J**, which is stable and on heating to 225° C forms **K** (C₄H₆; UV - λ_{max} 215nm). One mole of hydrogen bromide reacts with **K** at 45° C to give **L** (C₄H₇Br) and **M** (C₄H₇Br) in the

2-Aminobenzoic acid on reaction with $NaNO_2/HC1$ gives a compound N. In mass spectrometry, a compound is heated to a high temperature under vacuum and irradiated with a high energy electron beam to ionize it to form a cation. The cation undergoes fragmentation. The masses of the fragments are recorded in the spectra.

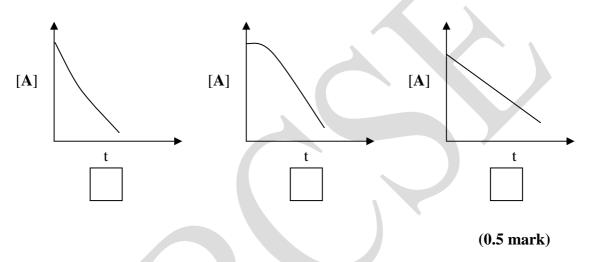
Alkaline solution of N is subjected to a flash discharge and a specially adapted mass spectrometer scans the spectrum of the products at rapid intervals. Mass spectrometric analysis of N gives peaks at masses 28, 44 and 76.

4.7 Structures of the fragments at masses 28, 44 and 76 and N are

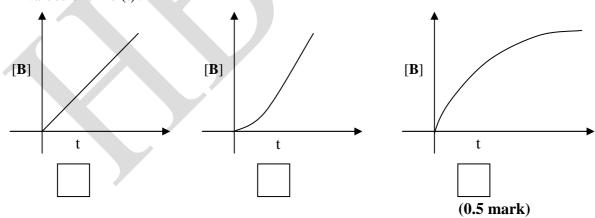
Mass: 28 44 76 Compound N

(2.5 marks)

Name of Student


Roll no.

Problem 5 11 Marks


Chemical kinetics

5.1 Consider a first order reaction $A \rightarrow B$, with initial concentration of A being $[A]_0$ and that of B being zero.

Which of the following curves correctly describes the variation of [A] for small values of time (t)?

5.2 Which of the following curves correctly describes the variation of [**B**] for small values of time (t)?

5.3 Some chemical reactions are known to follow zero order kinetics. Consider such a reaction $A \rightarrow B$ with a rate constant k in which concentration [A] reduces with time, t.

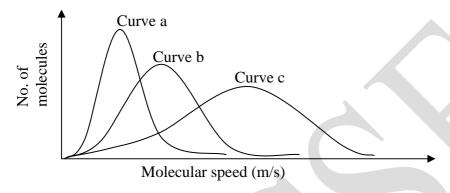
<u> </u>	White 4	ha differential	aguation	for	гал
a)	WITTE	the differential	equation	101	[A

		(1 mark)

		Assuming the initial concentration of $\mathbf{A} = [\mathbf{A}]_0$, write the expression for $[\mathbf{A}]$ in terms of $[\mathbf{A}]_0$, t and k for a zero order reaction							[A] in			
											(0.5 mark)	
	c)	Write the expression relating $[A]_0$, k and the half life of this reaction.										
											(1 mark)	
5.4	Ammo	nia deco	ompose	es on a	a tung	sten v	vire at 1	000 I	K. The foll	owi	ng results have	e been
	obtaine	d in a	const	ant v	olume	syst	em. Fir	nd ou	it the orde	er c	of reaction ar	nd the
	corresp	onding	rate co	nstan	t of th	e reac	tion by	appro	oximate est	ima	tion.	
	P(torr	310	321	332	355	377	421	476				
	t(sec)	0	100	200	400	600	1000	1500	0			
	t(see)		100	200			1000	1500				
	a)	Order										
	b)	Rate co	nstant	with	units							
											(2 marks)	
5.5	Decomposition of SO ₂ Cl ₂ (g) is described by the reaction:											
	SO ₂ Cl ₂	$(g) \rightarrow S$	$SO_2(g)$	+ Cl ₂	(g)							
	The ini	tial con	centrat	ion ar	nd the	initia	l reactio	n rate	es are deno	ted	as $[SO_2Cl_2]_0$ a	nd R_0 ,
	•								on the ord	er c	of the reaction	1 with
	respect	to the f	ollowi	ng dat	a coll	ected	at 298 I	ζ.				
	[SO ₂ Cl	₂] ₀ (mol	dm^{-3}	0.1	0		0.37		0.76		1.22	
	R ₀ (mo	dm ⁻³ s	-1)	2.2	24 x 10	0-6	8.29 x 1	.0-6	1.71 x 10	- 5	2.75×10^{-5}	
L	Determ	ine the	order o	of this	reacti	ion an	d the co	rresp	onding rate	e co	nstant, k (repo	rt
	only 1	significa	ant dig	it)						_		
	a)	Order:										
	b) k (with units)										(1.5 marks)	

5.6	Radio	active decay of an element follows first order kinetics. After how many years
	will 2	5% of the initial quantity of radium remain, if half life of radium is 1620 years?
		(0.5 movle)
		(0.5 mark)
		Avogadro number can be calculated experimentally. In a classic experiment,
		t Rutherford observed that a sample of 192 mg $^{226}_{88}$ Ra left for 83 days produced
	6.83 n	mm ³ of He gas measured at 273 K and 1 atm pressure.
	(i)	Calculate the moles of He produced in the experiment.
		(1 mark)
	The n	umber of disintegrations undergone by 1g of Ra in a second is $4.6 \times 10^{10} \text{ g}^{-1} \text{s}^{-1}$
	ii)	The number of disintegrations observed in the Rutherford's
	,	experiment is
		(1 mark)
	iii)	226 Ra emits α particles to give 214 Pb. Calculate the number of He atoms
		produced in the Rutherford experiment.
		(1 mark)
	iv)	Using the above data, calculate the Avogadro number.
	,	
		(0.5 1)
		(0.5 mark)

15 marks


Name of Student

Roll no.

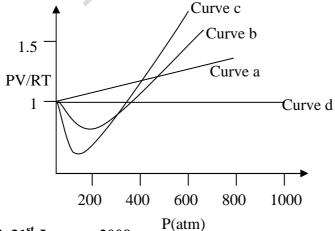
Problem 6

A. Kinetic theory of gases and Gas Laws

6.1. Typical Maxwell speed distribution curves for 1 mol of N_2 gas at three different temperatures 100 K, 300 K and 700 K are shown below

i. Match the curves with corresponding temperatures

(1 mark)


ii. Theoretically area under the curves is same

True

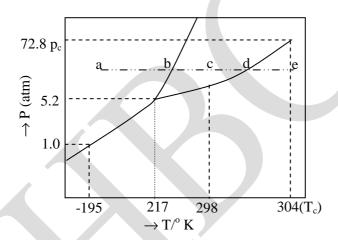
False

(0.5 mark)

6.2 Plots of PV/RT vs. P for 1 mol of H₂, NH₃, CH₄ and Ar gases are given below.

Match the curves with corresponding gases

Curve	Gas	
Curve a		
Curve b		
Curve c		
Curve d		(1.5 marks)
The van der V	Waals equation for o	ne mol of a real gas is $(P + a/V^2)(V - b) = RT$. The
correct order	for the value of 'a' fo	or H ₂ , NH ₃ , and CH ₄ gases is
i) H ₂ < NH ₃	< CH ₄	ii) H ₂ > NH ₃ > CH ₄
iii) H ₂ < CH ₄	< NH ₃	iv) $H_2 > CH_4 > NH_3$
, -	·	(0.5 mark)
A diver dives	s to 20 m depth of s	sea water ($\rho = 1.03 \times 10^3 \text{ kg m}^{-3}$) and rises to the
		. Change of pressure (in atmosphere) in coming to
_	from the depth is	or presente (in annespresse) in coming to
		(1 mark)
The total wor	k done (Joule) on lu	ings if the same expansion is carried out at the sea
surface at con	nstant temperature is	s (Assume volume of air in the lungs is 2L under
normal condit	tions).	
•		
		(1.5 marks)

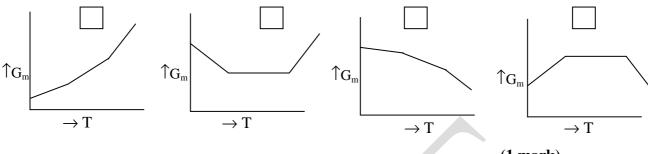

6.6 Human body functions best when oxygen gas has a partial pressure of 0.2 atm. Calculate the percentage of oxygen by volume in air carried by the diver at the sea depth of 20 m for best body function.

(1 mark)

B. Physical and chemical equilibrium

A phase diagram summarizes the conditions at which a substance exists as a solid, liquid or gas. Each solid line between two phases specifies the conditions of temperature and pressure under which the two phases can exist in equilibrium. The phase diagram of a one component system **S** is shown below. Based on the diagram, answer the following questions.

6.7 Which phases of **S** can coexist under atmospheric conditions?


(1 mark)

6.8 Under what conditions all the three phases of **S** can co-exist?

(0.5 mark)

6.9 Mark the correct graph showing the variation of molar Gibbs function (G_m) vs. temperature (T) along the line a-e of the phase diagram.

(1 mark)

6.10 Choose the correct option/s from the following statements for triple point of system **S**.

- a) All the three phases are in equilibrium
- b) Molar Gibbs energy for the three phases is the same
- c) Molar volume of the three phases is identical
- d) Molar entropy of the three phases is the same

(1 mark)

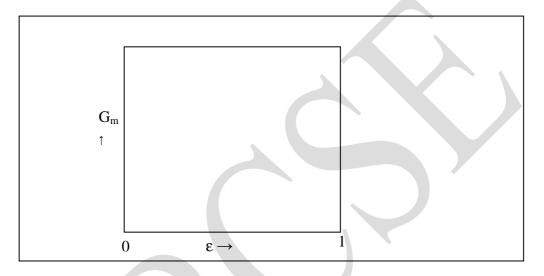
6.11 As a result of increase in external pressure, the melting point of solid **S** will

- a) increase
- b) decrease

 c) not change

(1 mark)

6.12 How many phases exist at T > 304 K and P > 72.8 atmosphere?


(0.5 mark)

6.13 For a chemical reaction $A \rightarrow B$, the extent of reaction expressed as ε is a measure of progress of the reaction. $\varepsilon = 0$ corresponds to pure A and $\varepsilon = 1$ correspond to pure B.

Draw a graph showing the variation of Gibbs free energy (G_m) vs. ε for the spontaneous reaction $A \to B$ as well as for $B \to A$.

Mark the following points on your graph i) P_1 corresponding to $\partial G_m/\partial \epsilon < 0$,

ii) P_2 corresponding to $\partial G_m/\partial \varepsilon = 0$ and iii) P_3 corresponding to $\partial G_m/\partial \varepsilon > 0$.

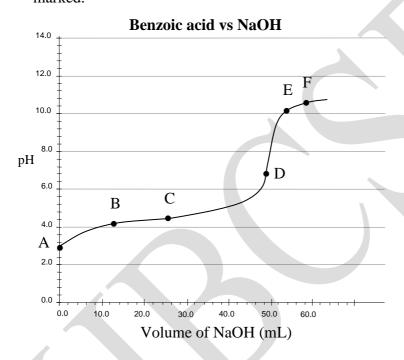
(2 marks)

6.14 van't Hoff's equation for a chemical reaction under equilibrium is given by

 $\frac{d \ln K}{dT} = \frac{\Delta_r H}{RT^2}$ where $\Delta_r H$ is standard reaction enthalpy at temperature T and K is the equilibrium constant. Predict how K will vary with temperature for an exothermic reaction.

a)	K decreases as the temperature rises	
α)	it decreases as the temperature rises	

a)	V mamaina	unchanged
c)	N remains	unchanged
- /		


Name of Student	Roll no.

Problem 7 11 marks

Acid-Base chemistry

Part A

7.1 Consider a pH titration of 50 mL 0.1 M benzoic acid vs 0.1M NaOH at 25°C. The experimentally observed curve is shown below, on which points A, B, C..... F are marked.

a)	Which point corresponds to approximately 0.07 M	
	benzoic acid solution?	
b)	At which point is the pH changing very rapidly?	
c)	Which point represents the smallest concentration of [H ⁺]?	

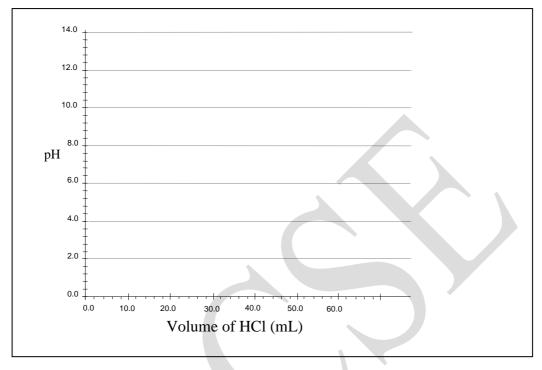
(2 marks)

(1 mark)

records a side	Estimata tha aV		~~~ 	
weak acid.	Estimate the pK	\mathbf{x}_{a} value from the	grapn.	

7.3 Suppose you are carrying out a conventional titration of benzoic acid and NaOH. Using the answer obtained in 7.2, choose an appropriate indicator from the table below.

Indicator	pH range	Colour change
Methyl yellow	2.9 - 4.0	red-yellow
Methyl orange	3.1 – 4.4	red-orange
Phenolphthalein	8.0 - 9.8	colorless-red


(0.5 mar)			

Part B

The percentage of NaHCO $_3$ and Na $_2$ CO $_3$ in a sample can be determined measuring the changes in pH during the titration of the sample with HCl. In a typical experiment, 0.500 g of the sample was dissolved in deionised water to make 50.0 mL solution. This solution was titrated with 0.115 M HCl. The pH titration curve showed two breaks at pH = 9.0 and pH = 5.0.

		(1 mark)
Calculate the total i	number of moles of acid u	sed
		f the volume of acid required is
b) to reach equivale	nce point at $pH = 5.0$ if the	ne volume of acid required is 34.3
		(1 mark)
D-4	hand Samuel SNA CO	
mixture.	ber of grains of Na ₂ CO ₃	and NaHCO ₃ and their percentag
mixture.		

7.7 30 mL of 0.1 M Na_2CO_3 solution was titrated with 0.1 M HCl. (The initial pH of the Na_2CO_3 solution is around 11.8). Qualitatively sketch the pH vs V_{HCl} curve for this titration.

(1 mark)

7.8 Choose the correct statement/s for the titration curve of pH vs V_{HCl} for Na_2CO_3 drawn by you in 7.7

i) The total volume of HCl required to reach the 2 nd end point is twice that of	
the first one	
ii) Number of moles of CO_3^{2-} is equal to the number of moles of HCO_3^{-} at some	
point on this curve	

iii) Number of moles of HCO_3^- is equal to twice the number of moles of CO_3^{-2} at some point on this curve

iv) The total volume of HCl required to reach the 2 nd end point is	
half that of the first one	

(2 marks)