SECTION A

One mark have been allotted to every candidate for question no 17.

All alternative solutions have been given due consideration SECTION B

QUESTION 31

A.
I. Total fluid if 70% of body weight i.e. 70% of $70 \mathrm{Kg}=49 \mathrm{Kg}$ Blood is 8% of the total fluid i.e. 8% of $49 \mathrm{~kg}=3.92 \mathrm{~kg}$ Converting kg into volume- $3920 / 1060=3.698$ litres
II. DNA in White blood cells: $7000 \times 1000 \times 1000 \times 3.69 \times 46$
III. Weight of albumin $=7 \%$ of $3.92=0.2744 \times 58 \%=.159 \mathrm{~kg}$ $66000 \mathrm{~g}=1 \mathrm{~mole}$ $159 \mathrm{~g}=159 / 66000$ moles
B.

Label	Composition of blood (choose between oxygenated or deoxygenated)	Direction of flow (choose between away from or towards the heart)
1	Oxygenated	Away from
2	Deoxygenated	Away from
3	Oxygenated	towards
4	Deoxygenated	towards

QUESTION 32

A.I) $\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{C}+3 \mathrm{Cl}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{AlCl}_{3}+3 \mathrm{CO}(\mathrm{g})$
II) $6 \mathrm{FeS}_{2}+6 \mathrm{H}_{2} \mathrm{O}+21 \mathrm{O}_{2} \quad \rightarrow \quad 6 \mathrm{FeSO}_{4}+6 \mathrm{H}_{2} \mathrm{SO}_{4}$
$2 \mathrm{Al}_{2} \mathrm{O}_{3} .2 \mathrm{XSiO}_{2}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \quad 2 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 x \mathrm{SiO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
\qquad
$6 \mathrm{FeS}_{2}+21 \mathrm{O}_{2}+2 \mathrm{Al}_{2} \mathrm{O}_{3} .2 \mathrm{XSiO}_{2} \rightarrow 2 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 x \mathrm{SiO}_{2}+6 \mathrm{FeSO}_{4}$
B. $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2(\mathrm{~g})}$
2×84
22.4 L

Amt of NaHCO_{3} equivalent to 56 mL of CO_{2} at $\mathrm{NTP}=(56 \times 168) / 22400=0.42 \mathrm{~g}$
Equivalent of NaHCO_{3} present $=0.42 / 84=0.005$ or 5 milli eq.
The amt. of HCl consumed by NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture $=30.5 \mathrm{~mL}$ of $1 \mathrm{~N} \mathrm{HCl}=0.0305$ equivalents or 30.5 milli eq.

The amt. of HCl consumed by $\mathrm{Na}_{2} \mathrm{CO}_{3}=30.5-5=25.5$ m.e.
Hence the amt. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present $=25.5 \times 53 \times 10^{-3} \mathrm{~g}=1.35 \mathrm{~g}$

Thus amt. of NaCl in 3 g of the mixture= 3-0.42-1.35=1.23
$\%$ Of $\mathrm{NaCl}=41 \%=(1.23 \times 100) / 3$

QUESTION 33

```
I) Sample 1) 2 mg of \(\mathrm{CaSO}_{4}=2 \times 10^{-3}\) of \(\mathrm{CaSO}_{4}=2 \times 10^{-3} / 136=1.5 \times 10^{-5} \mathrm{~mol}\) of \(\mathrm{CaSO}_{4} 1 \mathrm{~mol}\) of
    \(\mathrm{CaSO}_{4}=1 \mathrm{~mol}\) of \(\mathrm{CaCO}_{3}=100 \mathrm{~g}\) of \(\mathrm{CaCO}_{3}\)
    Therefore \(1.5 \times 10^{-5} \mathrm{~mol}\) of \(\mathrm{CaSO}_{4}=1.5 \times 10^{-5} \times 100=1.5 \times 10^{-3} \mathrm{~g}\) of \(\mathrm{CaCO}_{3}\)
    Thus, 1000 g of water contains \(\mathrm{CaSO}_{4}\) equivalent to \(1.5 \times 10^{-3} \mathrm{~g}\) of \(\mathrm{CaCO}_{3}\)
    \(10^{6} \mathrm{~g}\) (one million) of water contains \(=\left[\left(1.5 \times 10^{-3}\right) / 1000\right] \times 10^{6}=1.5 \mathrm{~g}^{\circ}\) of CaCO 3
    Or [( \(2 \times 100) / 136]=1.5 \mathrm{~g}\) of \(\mathrm{CaCO}_{3} \quad\) (direct method)
    0.5 mg of \(\mathrm{MgCl}_{2}=5 \times 10^{-4} \mathrm{~g}\) of \(\mathrm{MgCl}_{2}=5 \times 10^{-4} / 95=0.053 \times 10^{-4} \mathrm{~mol}\) of \(\mathrm{MgCl}_{2}\)
    1 mol of \(\mathrm{MgCl}_{2}=1 \mathrm{~mol}\) of \(\mathrm{CaCO}_{3}=100 \mathrm{~g}\) of \(\mathrm{CaCO}_{3}\)
    \(0.053 \times 10^{-4} \mathrm{~mol}_{\text {of }}^{2} \mathrm{MgCl}_{2}=0.053 \times 10^{-4} \times 100=0.053 \times 10^{-2} \mathrm{~g}\) of \(\mathrm{CaCO}_{3}\)
    \(10^{6} \mathrm{~g}\) (one million) of water contains \(=\left[\left(0.053 \times 10^{-2}\right) / 1000\right] \times 10^{6}=0.53 \mathrm{~g}\) of \(\mathrm{CaCO}_{3}\)
    Or \([(0.5 \times 100) / 95]=0.53 \mathrm{~g}\) of \(\mathrm{CaCO}_{3} \quad\) (direct method)
```

Hence degree of hardness of sample 1 is $1.5+0.53=2.03 \mathrm{ppm}$
Sample 2) 3 mg of $\mathrm{MgSO}_{4}=3 \times 10^{-3}$ of $\mathrm{MgSO}_{4}=3 \times 10^{-3} / 120=2.5 \times 10^{-5} \mathrm{~mol}$ of MgSO_{4}
1 mol of $\mathrm{MgSO}_{4}=1 \mathrm{~mol}$ of $\mathrm{CaCO}_{3}=100 \mathrm{~g}$ of CaCO_{3}
Therefore $2.5 \times 10^{-5} \mathrm{~mol}$ of $\mathrm{MgSO}_{4}=2.5 \times 10^{-5} \times 100=2.5 \times 10^{-3} \mathrm{~g}^{-3} \mathrm{CaCO}_{3}$
Thus, 1000 g of water contains MgSO_{4} equivalent to $2.5 \times 10^{-3} \mathrm{~g}$ of CaCO_{3}
$10^{6} \mathrm{~g}$ (one million) of water contains $=\left[\left(2.5 \times 10^{-3}\right) / 1000\right] \times 10^{6}=2.5 \mathrm{~g}^{\text {of CaCO }} 3$
Hence degree of hardness of sample $2=2.5 \mathrm{ppm}$
Or [(3x100)/120] $=2.5 \mathrm{~g}$ of $\mathrm{CaCO}_{3} \quad$ (direct method)
II) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{CaCO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
(Any one reaction either with Calcium or Magnesium)
$\mathrm{CaSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \quad \rightarrow \quad \mathrm{CaCO}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
$2 \mathrm{MgCl}_{2}+2 \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{MgCO}_{3}+4 \mathrm{NaCl}$
(Any two reactions either with sulphate or chloride of Calcium or Magnesium)

QUESTION 34

A. The evaporation of water through the pores causes decrease in the temperature. Let $m \mathrm{~kg}$ be the mass of the water evaporated.
Heat of vaporization $=42000 \mathrm{~J} / \mathrm{mol}=7000 / 3 \mathrm{~J} / \mathrm{g}=(7 / 3) \times 10^{6} \mathrm{~J} / \mathrm{kg}$
$(20-m) * 4200 * 5=m\left(7 \times 10^{6} / 3\right) \therefore(20-m) 21=7000 \mathrm{~m} / 3$
$\therefore 420-21 m=7000 m / 3 \therefore 1260-63 m=7000 m \therefore 1260=7063 m \therefore m \cong 0.18 \mathrm{~kg}$ (or, 0.17 kg)
B. Voltage across LED for 625 nm (red) light $=1250 / 625=2 \mathrm{~V}$.

Remaining voltage (from 5 V) will be across the resistance.
$\therefore V_{\text {res }}^{\text {red }}$ $=5-2=3 \mathrm{~V}$. Current through LED, i. e. through circuit is 20 mA (for significant brightness).
$\therefore R_{\text {red }}=\frac{3}{20 \times 10^{-3}}=150 \Omega$
Out of this 40Ω is a fixed resistance. Thus maximum additional resistance of 110Ω will be 625 nm light.

Voltage across LED for 500 nm (green) light $=1250 / 500=2.5 \mathrm{~V}$.
Remaining voltage (from 5 V) will be across the resistance.
$\therefore V_{\text {res }}^{\text {green }}=5-2.5=2.5 \mathrm{~V}$. Current through LED, i. e. through circuit is 20 mA (for significant brightness).
$\therefore R_{\text {red }}=\frac{2.5}{20 \times 10^{-3}}=125 \Omega$
Out of this 40Ω is a fixed resistance. Thus minimum additional resistance of 85Ω will be 500 nm light.

Range of rheostat resistance is 85Ω to 110Ω.

QUESTION 35

I) c)Variation in character should be available in the population
II) b) Bar eye is a mutant character because it is found rarely in the nature
III) b)Bb OR c)bb
IV) d)Adult
V) a) red, round-eyed
b) Yes
c) It shows a 9:3:3:1 ratio, a hallmark of independent assortment

QUESTION 36

A. Current through 8Ω resistance after removing R is $5 / 20=1 / 4 \mathrm{~A}$. \therefore the p. d. across 8Ω resistance is 2 V . \therefore in the original circuit, the p. d. across 6Ω resistance is 3 V . \therefore the current through it is $1 / 2 \mathrm{~A}$. \therefore the current through R is $1 / 4 \mathrm{~A}$ and p . d. across it is $2 \mathrm{~V} \therefore R=8 \Omega$
B. Current rating 3600 mAh means if we draw a constant current of 3.6 A , the battery will last for 1 hour. In the present case it lasts for 24 hours. $\therefore I=3.6 / 24=0.15 \mathrm{~A}$.
$V=3.6 \mathrm{~V}$ and $I=0.15 \mathrm{~A}$. Thus equivalent resistance of the circuit in the first case is $R_{x}=$ $3.6 / 0.15=24 \Omega$.

The equivalent circuit is given besides. Rx, the resistance between A and C is $=3 \mathrm{R} / 2$. Thus, R $=16 \Omega$

Part 2) When used across $D C$, then the points M, N and O are equipotential due to symmetry, the circuits can be

reduced to following and $\left(R_{\mathrm{x}}\right)_{2}=5 R / 4$ $=20 \Omega$.

Total energy is constant. $\therefore \mathrm{V}^{2} \mathrm{t} / \mathrm{R}_{\mathrm{x}}=$ constant. Battery voltage 3.6 V is the same. $\therefore \mathrm{t}$ is proportional to $\mathrm{R}_{\mathrm{x}} . \therefore \mathrm{t}_{2}=$ 20 hours.

QUESTION 37

A.
I) $\quad \mathrm{c}) 3 \mathrm{n}$
II) a)Mitochondrial DNA only
III) a) To retain large quantity of cytoplasm in the oocyte.
IV) b) Primary oocytes are already produced in the ovary when a girl is born.
B.
I) c)One male and two females all contributing genetically
iI) a) F
b) T
c) T
d) T
e) F

QUESTION 38

A. The answer is NO. If a student writes answer YES and gives the angles of emergence, it is not correct and no credit will be given. For answer NO, the sector is given in terms of angles α and β.
$\sqrt{3}=\frac{\sin 60^{\circ}}{\sin r}=\mu \therefore r=30^{\circ}$, for all the rays.
$\frac{1}{\mu}=\frac{1}{\sqrt{3}}=\sin i_{c} \therefore i_{c}=\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right) \cong 35^{0}$
As seen from the figure, the rays through glass just emerge (grazing emergence) at A and B . From $\triangle A C D, \alpha=180-60-35=85^{\circ}$
For $\triangle B C E, \beta=\angle A C B$ is exterior angle for $\angle C E B$ and $\angle E B C . \therefore \beta=120+35=155^{\circ}$

Diagram given may not be to the
scale.
B. $\lambda=20 \mathrm{~g} / \mathrm{m}=0.02 \mathrm{~kg} / \mathrm{m}, g=10 \mathrm{~m} / \mathrm{s}^{2}$

Distance x in metre from the free end	Tension $T=$ $m g$ in newton at that distance	$\frac{T}{\lambda} \quad$ in $\mathrm{m}^{2} \mathrm{~s}^{-2}$	$v=\sqrt{\frac{T}{\lambda}}$ $\mathrm{~m} / \mathrm{s}$
1	0.2	10	3.16
2	0.4	20	4.47
3	0.6	30	5.48
4	1.0	40	6.32
5	1.2	50	7.07
6		60	7.75

Final ans $5.9 \mathrm{~m} / \mathrm{s}$

QUESTION 39

A. Given C: $\mathrm{H}:: 10.5: 1$ Total : 11.5

For molecular weight of hydrocarbon in gas phase
$\mathrm{PV}=\frac{W}{M} R T$
$1 \times 1=\frac{2.8}{M} 0.0821 \times 400 \quad \mathrm{M}=92$
11.5 g of hydrocarbon has 1.0 g of hydrogen
92. g of hydrocarbon will have $\frac{92}{11.5} \times \frac{1.0}{1}=8 \mathrm{~g}$ of hydrogen

Hydrocarbon will have $92-8=84 \mathrm{~g}$ of carbon
8 g of hydrogen $=8$ atoms of hydrogen
84 g of carbon $=\frac{84}{12}=7$ atoms of carbon
Molecular formula: $\mathrm{C}_{7} \mathrm{H}_{8}$
B.

$$
\begin{array}{ll}
\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} & \rightarrow \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{H}_{2}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

Volume before reaction
a b

Volume after reaction
(a-2b) 0
$a+b=40$
$a-2 b=10$
$a=30 \mathrm{ml}, \quad b=10 \mathrm{ml}$
Mole $\%$ of hydrogen $=$ Volume $\%$ of hydrogen $=\frac{30}{30+10} \times 100=75$
Ans : 75%.

QUESTION 40

I. a) False
b) False
c) True
II. (i) chloroplast, (ii) photosynthesis (iii) decreases (iv) endosmosis (v) higher (vi) lower (vii) increase
III. c) Decrease in the rate of nitrogen fixation.
IV. a) The environment is hypertonic with respect to cell A.
V. C) Water will flow out from the guard cell
VI. a) Stoma remains in state 1 for an extended period of time.

QUESTION 41

$3.5 \mathrm{hrs}=3.5 \times 60=210 \mathrm{~min}$

Amount of air inhaled $=210 \times 8=1680$ litres

20 \% of oxygen present in air ,

Amount of oxygen in 1680 litres air $=\frac{1680 \times 20}{100}=336$ litres
5% of it is consumed by the body at STP

Amount of oxygen consumed by body in 3.5 hrs at $\mathrm{STP}=\frac{336 \times 5}{100}=16.8$ litres
22.4 litres $=1$ mole at STP

Hence 16.8 litres of oxygen at STP $=\frac{16.8}{22.4}=0.75 \mathrm{~mole}$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+$ Energy
1Mole 6 Mole 6 Mole
0.125 mole 0.75 mole 0.75 mole

Molecular mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=72+12+96=180$
0.125 mole of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=0.125 \times 180=22.5 \mathrm{~g}$

Amount of carbon dioxide exhaled in 3.5 hrs during the process $=0.75$ mole
$=0.75 \times 44$ (molecular mass of $\left.\mathrm{CO}_{2}\right)=33 \mathrm{~g}$

QUESTION 42

Volume of 40% of 1000 litre is 400 L whose mass is $400 * 1000 * 1.1 \mathrm{~g}=440 \mathrm{~kg}$ Volume of 60% of 1000 litre of $\mathrm{H}_{2} \mathrm{O}$ has mass of $600 * 1000 * 1 \mathrm{~g} \mathrm{=} 600 \mathrm{~kg}$.

Energy required to raise temperature from 4 to 10 degrees $=440$ * (10-4) * $4.25+600$ * (104) $* 4.15=11220+14940=26160 \mathrm{KJ}$

At 4 degrees the melting of $\mathrm{D}_{2} \mathrm{O}$ will require $\operatorname{L.m}=340 * 440=149600 \mathrm{KJ}$
Now change of water from 0 to 4 degrees requires
600 * (4-0) * 4.15 = 9960 KJ
melting of ice requires 600 * $330=198000 \mathrm{KJ}$
remaining energy $=3440 \mathrm{KJ}$
sp heat $=3440 /(4 * 440)=1.95 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}$
At point $\mathrm{A}, \mathrm{Q}=198000 \mathrm{~kJ}, \mathrm{~T}=0^{\circ} \mathrm{C}$ At point $\mathrm{B}, \mathrm{Q}=211400 \mathrm{~kJ}, \mathrm{~T}=4^{\circ} \mathrm{C}$ At point $\mathrm{C}, \mathrm{Q}=361000 \mathrm{~kJ}, \mathrm{~T}=4{ }^{\circ} \mathrm{C}$ At point $\mathrm{D}, \mathrm{Q}=387160 \mathrm{~kJ}, \mathrm{~T}=10^{\circ} \mathrm{C}$

