1. Let $A B C$ be a triangle and D be the mid-point of $B C$. Suppose the angle bisector of $\angle A D C$ is tangent to the circumcircle of triangle $A B D$ at D. Prove that $\angle A=90^{\circ}$.

Solution: Let P be the center of the circumcircle Γ of $\triangle A B C$. Let the tangent at D to Γ intersect $A C$ in E. Then $P D \perp D E$. Since $D E$ bisects $\angle A D C$, this implies that $D P$ bisects $\angle A D B$. Hence the circumcenter and the incenter of $\triangle A B D$ lies on the same line $D P$. This implies that $D A=D B$. Thus $D A=D B=D C$ and hence D is the circumcenter
 of $\triangle A B C$. This gives $\angle A=90^{\circ}$.
2. Let a, b, c be positive real numbers such that $a b c=1$ Prove that

$$
\frac{a^{3}}{(a-b)(a-c)}+\frac{b^{3}}{(b-c)(b-a)}+\frac{c^{3}}{(c-a)(c-b)} \geq 3
$$

Solution: Observe that

$$
\begin{aligned}
\frac{1}{(a-b)(a-c)}=\frac{(b-c)}{(a-b)(b-c)(a-c)} & \\
& =\frac{(a-c)-(a-b)}{(a-b)(b-c)(a-c)}=\frac{1}{(a-b)(b-c)}-\frac{1}{(b-c)(a-c)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{a^{3}}{(a-b)(a-c)}+\frac{b^{3}}{(b-c)(b-a)}+\frac{c^{3}}{(c-a)(c-b)} & =\frac{a^{3}-b^{3}}{(a-b)(b-c)}+\frac{c^{3}-a^{3}}{(c-a)(c-b)} \\
& =\frac{a^{2}+a b+b^{2}}{b-c}-\frac{c^{2}+c a+a^{2}}{b-c} \\
& =\frac{a b+b^{2}-c^{2}-c a}{b-c} \\
& =\frac{(a+b+c)(b-c)}{b-c}=a+b+c
\end{aligned}
$$

Therefore

$$
\frac{a^{3}}{(a-b)(a-c)}+\frac{b^{3}}{(b-c)(b-a)}+\frac{c^{3}}{(c-a)(c-b)}=a+b+c \geq 3(a b c)^{1 / 3}=3
$$

3. Let a, b, c, d, e, f be positive integers such that

$$
\frac{a}{b}<\frac{c}{d}<\frac{e}{f}
$$

Suppose $a f-b e=-1$. Show that $d \geq b+f$.
Solution: Since $b c-a d>0$, we have $b c-a d \geq 1$. Similarly, we obtain $d e-f c \geq 1$. Therefore

$$
d=d(b e-a f)=d b e-d a f=d b e-b f c+b f c-a d f=b(d e-f c)+f(b c-a d) \geq b+f
$$

4. There are 100 countries participating in an olympiad. Suppose n is a positive integer such that each of the 100 countries is willing to communicate in exactly n languages. If each set of 20 countries can communicate in at least one common language, and no language is common to all 100 countries, what is the minimum possible value of n ?

Solution: We show that $n=20$. We first show that $n=20$ is possible. Call the countries C_{1}, \cdots, C_{100}. Let $1,2, \cdots, 21$ be languages and suppose, the country $C_{i}(1 \leq i \leq 20)$ communicates exactly in the languages $\{j: 1 \leq j \leq 20, j \neq i\}$. Suppose each of the countries C_{21}, \cdots, C_{100} communicates in the languages $1,2, \cdots, 20$. Then, clearly every set of 20 countries have a common language of communication.
Now, we show that $n \geq 20$. If $n<20$, look at any country A communicating in the languages L_{1}, \cdots, L_{n}. As no language is common to all 100 countries, for each L_{i}, there is a country A_{i} not communicating in L_{i}. Then, the $n+1 \leq 20$ countries $A, A_{1}, A_{2}, \cdots, A_{n}$ have no common language of communication. This contradiction shows $n \geq 20$.
5. Let $A B C$ be a right-angled triangle with $\angle B=90^{\circ}$. Let I be the incentre of $A B C$. Extend $A I$ and $C I$; let them intersect $B C$ in D and $A B$ in E respectively. Draw a line perpendicular to $A I$ at I to meet $A C$ in J; draw a line perpendicular to $C I$ at I to meet $A C$ in K. Suppose $D J=E K$. Prove that $B A=B C$.

Solution: Extend $J I$ to meet $C B$ extended at L. Then $A L B I$ is a cyclic quadrilateral. Therefore $\angle B L I=\angle B A I=\angle I A C$. Therefore $\angle L A D=\angle I B D=45^{\circ}$. Since $\angle A I L=$ 90°, it follows that $\angle A L I=45^{\circ}$. Therefore $A I=I L$. This shows that the triangles $A I J$ and $L I D$ are congruent giving $I J=I D$. Similarly, $I K=I E$. Since $I J \perp I D$ and $I K \perp I E$ and since $D J=E K$, we see that $I J=I D=$ $I K=I E$. Thus E, D, J, K are concyclic. This implies together with $D J=E K$ that $E D J K$ is an isosceles trapezium. Therefore $D E \| J K$. Hence $\angle E D A=\angle D A C=\angle A / 2$
 and $\angle D E C=\angle E C A=\angle C / 2$. Since $I E=$ $I D$, it follows that $\angle A / 2=\angle C / 2$. This means $B A=B C$.
6. (a) Given any natural number $N \geq 3$, prove that there exists a strictly increasing sequence of N positive integers in harmonic progression.
(b) Prove that there cannot exist a strictly increasing infinite sequence of positive integers which is in harmonic progression.

Solution: (a) Let $N \geq 3$ be a given positive integer. Consider the HP

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{N}
$$

If we multiply this by N !, we get the HP

$$
N!, \frac{N!}{2}, \frac{N!}{3}, \frac{N!}{4}, \ldots, \frac{N!}{N}
$$

This is decreasing. We write this in reverse order to get a strictly increasing HP:

$$
\frac{N!}{N}, \frac{N!}{N-1}, \frac{N!}{N-2}, \ldots, \frac{N!}{3}, \frac{N!}{2}, N!.
$$

(b) Assume the contrary that there is an infinite strictly increasing sequence $\left\langle a_{1}, a_{2}, a_{3}, \ldots,\right\rangle$ of positive integers which forms a harmonic progression. Define $b_{k}=1 / a_{k}$, for $k \geq 1$. Then $\left\langle b_{1}, b_{2}, b_{3}, \ldots\right\rangle$ is a strictly decreasing sequence of positive rational numbers which is in an arithmetic progression.

Let $d=b_{2}-b_{1}<0$ be its common difference. Then $b_{1}-b_{2}>0$. Choose a positive integer n such that

$$
n>\frac{b_{1}}{b_{1}-b_{2}}
$$

Then

$$
b_{n+1}=b_{1}+\left(b_{2}-b_{1}\right) n=b_{1}-\left(b_{1}-b_{2}\right) n<b_{1}-\left(\frac{b_{1}}{b_{1}-b_{2}}\right) \times\left(b_{1}-b_{2}\right)=0
$$

Thus for all large n, we see that b_{n} is negative contradicting b_{n} is positive for all n.
\qquad

