1. Let ABC be a right-angled triangle with $\angle B = 90^{\circ}$. Let I be the incentre of ABC. Draw a line perpendicular to AI at I. Let it intersect the line CB at D. Prove that CI is perpendicular to AD and prove that $ID = \sqrt{b(b-a)}$ where BC = a and CA = b.

Solution: First observe that ADBI is a cyclic quadrilateral since $\angle AID = \angle ABD = 90^{\circ}$. Hence $\angle ADI = \angle ABI = 45^{\circ}$. Hence $\angle DAI = 45^{\circ}$. But we also have

$$\angle ADB = \angle ADI + \angle IDB = 45^{\circ} + \angle IAB$$
$$= \angle DAI + \angle IAC = \angle DAC$$

Therefore CDA is an isosceles triangle with CD = CA. Since CI bisects $\angle C$ it follows that $CI \perp AD$.

This shows that DB = CA - CB = b - a. Therefore

$$AD^{2} = c^{2} + (b-a)^{2} = c^{2} + b^{2} + a^{2} - 2ba = 2b(b-a).$$

But then $2ID^2 = AD^2 = 2b(b-a)$ and this gives $ID = \sqrt{b(b-a)}$.

2. Let a, b, c be positive real numbers such that

$$\frac{a}{1+a} + \frac{b}{1+b} + \frac{c}{1+c} = 1.$$

Prove that $abc \leq 1/8$.

Solution: This is equivalent to

$$\sum a(1+b)(1+c) = (1+a)(1+b)(1+c).$$

This simplifies to

$$ab + bc + ca + 2abc = 1$$

Using AM-GM inequality, we have

$$1 = ab + bc + ca + 2abc \ge 4(ab \cdot bc \cdot ca \cdot 2abc)^{1/4}.$$

Simplificaton gives

 $abc \leq \frac{1}{8}.$

3. For any natural number n, expressed in base 10, let S(n) denote the sum of all digits of n. Find all natural numbers n such that $n = 2S(n)^2$.

Solution: We use the fact that 9 divides n-S(n) for every natural number n. Hence S(n)(2S(n)-1) is divisible by 9. Since S(n) and 2S(n)-1 are relatively prime, it follows that 9 divides either S(n) or 2S(n)-1, but not both. We also observe that the number of digits of n cannot exceed 4. If n has k digits, then $n \ge 10^{k-1}$ and $2S(n)^2 \le 2 \times (9k)^2 = 162k^2$. If $k \ge 6$, we see that

$$2S(n)^2 \le 162k^2 < 5^4k^2 < 10^{k-1} \le n.$$

If k = 5, we have

$$2S(n)^2 \le 162 \times 25 = 4150 < 10^4 \le n.$$

Therefore $n \leq 4$ and $S(n) \leq 36$. If 9|S(n), then S(n) = 9, 18, 27, 36. We see that $2S(n)^2$ is respectively equal to 162, 648, 1458, 2592. Only 162 and 648 satisfy $n = 2S(n)^2$. If 9|(2S(n) - 1), then 2S(n) = 9k + 1. Only k = 1, 3, 5, 7 give integer values for S(n). In these cases $2S(n)^2 = 50, 392, 1058, 2048$. Here again 50 and 392 give $n = 2S(n)^2$. Thus the only natural numbers with the property $n = 2S(n)^2$ are 50, 162, 392, 648.

4. Find the number of all 6-digit natural numbers having exactly three odd digits and three even digits.

Solution: First we choose 3 places for even digits. This can be done in $\binom{6}{3} = 20$ ways. Observe that the other places for odd digits get automatically fixed. There are 5 even digits and 5 odd digits. Any of these can occur in their proper places. Hence there are 5^6 ways of selecting 3 even and 3 odd digits for a particular selection of place for even digits. Hence we get 20×5^6 such numbers. But this includes all those numbers having the first digit equal to 0. Since we are looking for 6-digit numbers, these numbers have to be removed from our counting. If we fix 0 as the first digit, we have, 2 places for even numbers and 3 places for odd numbers. We can choose 2 places for even numbers in $\binom{5}{2} = 10$ ways. As earlier, for any such choice of places for even digits, we can choose even digits in 5^2 ways and odd digits in 5^3 ways. Hence the number of ways of choosing 3 even and 3 odd digits with 0 as the first digit is 10×5^5 . Therfore the number of 6-digit numbers with 3 even digits and 3 odd digits is

$$20 \times 5^6 - 10 \times 5^5 = 10 \times 5^5(10 - 1) = 281250$$

5. Let ABC be a triangle with centroid G. Let the circumcircles of $\triangle AGB$ and $\triangle AGC$ intersect the line BC in X and Y respectively, which are distinct from B, C. Prove that G is the centroid of $\triangle AXY$.

Solution: Let D be the midpoint of AB. Observe that $DX \cdot DB = DG \cdot DA = DY \cdot DC$. But DB = DC. Hence DX = DY. This means that D is the midpoint of XY as well. Hence AD is also a median of $\triangle AXY$. Now we know that AG : GD = 2 : 1. If G' is the median of $\triangle AXY$, then G' must lie on AD and AG' : G'D = 2 : 1. We conclude that G = G'.

6. Let $\langle a_1, a_2, a_3, \ldots \rangle$ be a strictly increasing sequence of positive integers in an arithmetic progression. Prove that there is an infinite subsequence of the given sequence whose terms are in a geometric progression.

Solution: Let $\langle a_1, a_2, \ldots, a_{n+1} \ldots \rangle = \langle a, a+d, \ldots, a+nd, \ldots \rangle$ be a strictly increasing sequence of positive integers in arithmetic progression. Here *a* and *d* are both positive integers. Consider the following subsequence:

$$\langle a, a(1+d), a(1+d)^2, \dots, a(1+d)^n, \dots \rangle.$$

This is a geometric progression. Here a > 0 and the common ratio 1 + d > 1. Hence the sequence is strictly increasing. The first term is a which is in the given AP. The second term is a(1+d) = a + ad which is the (a + 1)-th term of the AP. In general, we see that

$$a(1+d)^n = a + d\left(\binom{n}{1}a + \binom{n}{2}ad + \dots + \binom{n}{n}ad^{n-1}\right).$$

Here the coefficient of d in the braces is also a positive integer. Hence $a(1+d)^n$ is also a term of the given AP.