1. Let $A B C$ be a right-angled triangle with $\angle B=90^{\circ}$. Let I be the incentre of $A B C$. Draw a line perpendicular to $A I$ at I. Let it intersect the line $C B$ at D. Prove that $C I$ is perpendicular to $A D$ and prove that $I D=\sqrt{b(b-a)}$ where $B C=a$ and $C A=b$.

Solution: First observe that $A D B I$ is a cyclic quadrilateral since $\angle A I D=\angle A B D=90^{\circ}$. Hence $\angle A D I=\angle A B I=45^{\circ}$. Hence $\angle D A I=45^{\circ}$. But we also have

$$
\begin{aligned}
\angle A D B=\angle A D I+ & \angle I D B=45^{\circ}+\angle I A B \\
& =\angle D A I+\angle I A C=\angle D A C
\end{aligned}
$$

Therefore $C D A$ is an isosceles triangle with $C D=$
 $C A$. Since $C I$ bisects $\angle C$ it follows that $C I \perp A D$.

This shows that $D B=C A-C B=b-a$. Therefore

$$
A D^{2}=c^{2}+(b-a)^{2}=c^{2}+b^{2}+a^{2}-2 b a=2 b(b-a) .
$$

But then $2 I D^{2}=A D^{2}=2 b(b-a)$ and this gives $I D=\sqrt{b(b-a)}$.
2. Let a, b, c be positive real numbers such that

$$
\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=1
$$

Prove that $a b c \leq 1 / 8$.
Solution: This is equivalent to

$$
\sum a(1+b)(1+c)=(1+a)(1+b)(1+c)
$$

This simplifies to

$$
a b+b c+c a+2 a b c=1
$$

Using AM-GM inequality, we have

$$
1=a b+b c+c a+2 a b c \geq 4(a b \cdot b c \cdot c a \cdot 2 a b c)^{1 / 4}
$$

Simplificaton gives

$$
a b c \leq \frac{1}{8}
$$

3. For any natural number n, expressed in base 10 , let $S(n)$ denote the sum of all digits of n. Find all natural numbers n such that $n=2 S(n)^{2}$.

Solution: We use the fact that 9 divides $n-S(n)$ for every natural number n. Hence $S(n)(2 S(n)-1)$ is divisible by 9 . Since $S(n)$ and $2 S(n)-1$ are relatively prime, it follows that 9 divides either $S(n)$ or $2 S(n)-1$, but not both. We also observe that the number of digits of n cannot exceed 4 . If n has k digits, then $n \geq 10^{k-1}$ and $2 S(n)^{2} \leq 2 \times(9 k)^{2}=162 k^{2}$. If $k \geq 6$, we see that

$$
2 S(n)^{2} \leq 162 k^{2}<5^{4} k^{2}<10^{k-1} \leq n
$$

If $k=5$, we have

$$
2 S(n)^{2} \leq 162 \times 25=4150<10^{4} \leq n
$$

Therefore $n \leq 4$ and $S(n) \leq 36$.
If $9 \mid S(n)$, then $S(n)=9,18,27,36$. We see that $2 S(n)^{2}$ is respectively equal to $162,648,1458$, 2592. Only 162 and 648 satisfy $n=2 S(n)^{2}$.

If $9 \mid(2 S(n)-1)$, then $2 S(n)=9 k+1$. Only $k=1,3,5,7$ give integer values for $S(n)$. In these cases $2 S(n)^{2}=50,392,1058,2048$. Here again 50 and 392 give $n=2 S(n)^{2}$.
Thus the only natural numbers wth the property $n=2 S(n)^{2}$ are $50,162,392,648$.
4. Find the number of all 6 -digit natural numbers having exactly three odd digits and three even digits.

Solution: First we choose 3 places for even digits. This can be done in $\binom{6}{3}=20$ ways. Observe that the other places for odd digits get automatically fixed. There are 5 even digits and 5 odd digits. Any of these can occur in their proper places. Hence there are 5^{6} ways of selecting 3 even and 3 odd digits for a particular selection of place for even digits. Hence we get 20×5^{6} such numbers. But this includes all those numbers having the first digit equal to 0 . Since we are looking for 6 -digit numbers, these numbers have to be removed from our counting. If we fix 0 as the first digit, we have, 2 places for even numbers and 3 places for odd numbers. We can choose 2 places for even numbers in $\binom{5}{2}=10$ ways. As earlier, for any such choice of places for even digits, we can choose even digits in 5^{2} ways and odd digits in 5^{3} ways. Hence the number of ways of choosing 3 even and 3 odd digits with 0 as the first digit is 10×5^{5}. Therfore the number of 6 -digit numbers with 3 even digits and 3 odd digits is

$$
20 \times 5^{6}-10 \times 5^{5}=10 \times 5^{5}(10-1)=281250
$$

5. Let $A B C$ be a triangle with centroid G. Let the circumcircles of $\triangle A G B$ and $\triangle A G C$ intersect the line $B C$ in X and Y respectively, which are distinct from B, C. Prove that G is the centroid of $\triangle A X Y$.

Solution: Let D be the midpoint of $A B$. Observe that $D X \cdot D B=D G \cdot D A=D Y \cdot D C$. But $D B=D C$. Hence $D X=D Y$. This means that D is the midpoint of $X Y$ as well. Hence $A D$ is also a median of $\triangle A X Y$. Now we know that $A G: G D=2: 1$. If G^{\prime} is the median of $\triangle A X Y$, then G^{\prime} must lie on $A D$ and $A G^{\prime}: G^{\prime} D=2: 1$. We conclude that $G=G^{\prime}$.

6. Let $\left\langle a_{1}, a_{2}, a_{3}, \ldots\right\rangle$ be a strictly increasing sequence of positive integers in an arithmetic progression. Prove that there is an infinite subsequence of the given sequence whose terms are in a geometric progression.

Solution: Let $\left\langle a_{1}, a_{2}, \ldots, a_{n+1} \ldots\right\rangle=\langle a, a+d, \ldots, a+n d, \ldots\rangle$ be a strictly increasing sequence of positive integers in arithmetic progression. Here a and d are both positive integers. Consider the following subsequence:

$$
\left\langle a, a(1+d), a(1+d)^{2}, \ldots, a(1+d)^{n}, \ldots\right\rangle
$$

This is a geometric progression. Here $a>0$ and the common ratio $1+d>1$. Hence the sequence is strictly increasing. The first term is a which is in the given AP. The second term is $a(1+d)=a+a d$ which is the $(a+1)$-th term of the AP. In general, we see that

$$
a(1+d)^{n}=a+d\left(\binom{n}{1} a+\binom{n}{2} a d+\cdots+\binom{n}{n} a d^{n-1}\right)
$$

Here the coefficient of d in the braces is also a positive integer. Hence $a(1+d)^{n}$ is also a term of the given AP.

