## CRMO-2015 questions and solutions

1. Let $A B C$ be a triangle. Let $B^{\prime}$ denote the reflection of $B$ in the internal angle bisector $\ell$ of $\angle A$. Show that the circumcentre of the triangle $C B^{\prime} I$ lies on the line $\ell$, where $I$ is the incentre of $A B C$.

Solution: Let the line $\ell$ meet the circumcircle of $A B C$ in $E$. Then $E$ is the midpoint of the minor $\operatorname{arc} B C$. Hence $E B=E C$.
Note that $\angle E B C=\angle E A C=A / 2$ and $\angle I B C=$ $B / 2$. Hence

$$
\angle B I E=\angle A B I+\angle B A I=B / 2+A / 2
$$

We also have

$$
\angle I B E=\angle I B C+\angle C B E=B / 2+A / 2
$$



Therefore $\angle B I E=\angle I B E$, so that $E B=E I$. Since $A E$ is the perpendicular bisector of $B B^{\prime}$, we also have $E B=E B^{\prime}$. Thus we get

$$
E B^{\prime}=E C=E I
$$

This implies that $E$ is the circumcentre of $\triangle C B^{\prime} I$
2. Let $P(x)=x^{2}+a x+b$ be a quadratic polynomial where $a$ is real and $b \neq 2$ is rational. Suppose $P(0)^{2}, P(1)^{2}, P(2)^{2}$ are integers. Prove that $a$ and $b$ are integers.

Solution: We have $P(0)=b$. Since $b$ is rational and $b^{2}=P(0)^{2}$ is an integer, we conclude that $b$ is an integer. Observe that

$$
\begin{aligned}
& P(1)^{2}=(1+a+b)^{2}=a^{2}+2 a(1+b)+(1+b)^{2} \in \mathbb{Z} \\
& P(2)^{2}=(4+2 a+b)^{2}=4 a^{2}+4 a(4+b)+(4+b)^{2} \in \mathbb{Z}
\end{aligned}
$$

Eliminating $a^{2}$, we see that $4 a(b-2)+4(1+b)^{2}-(4+b)^{2} \in \mathbb{Z}$. Since $b \neq 2$, it follows that $a$ is rational. Hence the equation $x^{2}+2 x(1+b)+(1+b)^{2}-\left(a^{2}+2 a(1+b)+(1+b)^{2}\right)=0$ is a quadratic equation with integer coefficients and has rational solution $a$. It follows that $a$ is an integer.
3. Find all integers $a, b, c$ such that

$$
a^{2}=b c+4, \quad b^{2}=c a+4
$$

Solution: Suppose $a=b$. Then we get one equation: $a^{2}=a c+4$. This reduces to $a(a-c)=4$. Therefore $a=1, a-c=4 ; a=-1, a-c=-4 ; a=4, a-c=1$; $a=-4, a-c=-1 ; a=2, a-c=2 ; a=-2, a-c=-2$. Thus we get $(a, b, c)=(1,1,-3)$, $(-1,-1,3),(4,4,3),(-4,-4,-3) ;(2,2,0),(-2,-2,0)$.
If $a \neq b$, subtracting the second relation from the first we get

$$
a^{2}-b^{2}=c(b-a)
$$

This gives $a+b=-c$. Substituting this in the first equation, we get

$$
a^{2}=b(-a-b)+4
$$

Thus $a^{2}+b^{2}+a b=4$. Multiplication by 2 gives

$$
(a+b)^{2}+a^{2}+b^{2}=8
$$

Thus $(a, b)=(2,-2),(-2,2),(2,0),(-2,0),(0,2),(0,-2)$. We get respectively $c=$ $0,0,-2,2,-2,2$. Thus we get the triples:

$$
\begin{aligned}
(a, b, c)=(1,1,-3),(-1,-1,3) & ,(4,4,3),(-4,-4,-3),(2,2,0),(-2,-2,0) \\
& (2,-2,0),(-2,2,0),(2,0,-2),(-2,0,2),(0,2,-2),(0,-2,2)
\end{aligned}
$$

4. Suppose 40 objects are placed along a circle at equal distances. In how many ways can 3 objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite?

Solution: One can choose 3 objects out of 40 objects in $\binom{40}{3}$ ways. Among theese choices all would be together in 40 cases; exactly two will be together in $40 \times 36$ cases. Thus three objects can be chosen such that no two adjacent in $\binom{40}{3}-40-(40 \times 36)$ ways. Among these, furthrer, two objects will be diametrically opposite in 20 ways and the third would be on either semicircle in a non adjacent portion in $40-6=34$ ways. Thus required number is

$$
\binom{40}{3}-40-(40 \times 36)-(20 \times 34)=7720
$$

5. Two circles $\Gamma$ and $\Sigma$ intersect at two distinct points $A$ and $B$. A line through $B$ intersects $\Gamma$ and $\Sigma$ again at $C$ and $D$, respectively. Suppose that $C A=C D$. Show that the centre of $\Sigma$ lies on $\Gamma$.

Solution: Let the perpendicular from $C$ to $A D$ intersect $\Gamma$ at $O$. Since $C A=C D$ we have that $C O$ is the perpendicular bisector of $A D$ and also the angular bisector of $\angle A C D$. From the former, it follows that $O A=O D$, and from the latter it follows that $\angle O C B=\angle O C A$ and hence $O A=O B$. Thus we get $O A=O B=O D$. This means $O$ is the circumcentre of triangle $A D B$. This shows that $O$ is the centre of $\Sigma$.

6. How many integers $m$ satisfy both the following properties:

$$
\text { (i) } 1 \leq m \leq 5000 \text {; (ii) }[\sqrt{m}]=[\sqrt{m+125}] \text { ? }
$$

(Here $[x]$ denotes the largest integer not exceeding $x$, for any real number $x$.)
Solution: Let $[\sqrt{m}]=[\sqrt{m+125}]=k$. Then we know that

$$
k^{2} \leq m<m+125<(k+1)^{2}
$$

Thus

$$
m+125<k^{2}+2 k+1 \leq m+2 k+1
$$

This shows that $2 k+1>125$ or $k>62$. Using $k^{2} \leq 5000$, we get $k \leq 70$. Thus $k \in$ $\{63,64,65,66,67,68,69,70\}$. We observe that $63^{2}=3969$ and $64^{2}=63^{2}+127$. Hence

$$
\left[\sqrt{63^{2}+125}\right]=\left[\sqrt{63^{2}+1+125}\right]=63
$$

but $\left[\sqrt{63^{2}+2+125}\right]=64$. Thus we get two values of $m$ such that $[\sqrt{m}]=[\sqrt{m+125}]$ for $k=63$. Similarly, $65^{2}=64^{2}+129$ so that

$$
\left[\sqrt{64^{2}+125}\right]=\left[\sqrt{64^{2}+1+125}\right]=\left[\sqrt{64^{2}+2+125}\right]=\left[\sqrt{64^{2}+3+125}\right]=64
$$

but $\left[\sqrt{64^{2}+4+125}\right]=65$. Thus we get four values of $m$ such that $[\sqrt{m}]=[\sqrt{m+125}]$ for $k=64$. Continuing, we see that there are $6,8,10,12,14,16$ values of $m$ respectively for $k=65,66,67,68,69,70$. Together we get

$$
2+4+6+8+10+12+14+16=2 \times \frac{8 \times 9}{2}=72
$$

values of $m$ satisfying the given requirement.
$\qquad$

