## CRMO-2015 questions and solutions

1. Two circles $\Gamma$ and $\Sigma$, with centres $O$ and $O^{\prime}$, respectively, are such that $O^{\prime}$ lies on $\Gamma$. Let $A$ be a point on $\Sigma$ and $M$ the midpoint of the segment $A O^{\prime}$. If $B$ is a point on $\Sigma$ different from $A$ such that $A B$ is parallel to $O M$, show that the midpoint of $A B$ lies on $\Gamma$.

Solution: Let $C$ be the reflection of $O^{\prime}$ with respect to $O$. Then in triangle $O^{\prime} A C$, the midpoints of the segments $O^{\prime} A$ and $O^{\prime} C$ are $M$ and $O$, respectively. This implies $A C$ is parallel to $O M$, and hence $B$ lies on $A C$. Let the line $A C$ intersect $\Gamma$ again at $N$. Since $O^{\prime} C$ is a diameter of $\Gamma$ it follows that $\angle O^{\prime} N C=90^{\circ}$. Since $O^{\prime} A=O^{\prime} B$, we can now conclude that $N$ is the midpoint of
 the segment $A B$.
2. Let $P(x)=x^{2}+a x+b$ be a quadratic polynomial where $a$ and $b$ are real numbers. Suppose $\left\langle P(-1)^{2}, P(0)^{2}, P(1)^{2}\right\rangle$ is an arithmetic progression of integers. Prove that $a$ and $b$ are integers.
Solution: Observe that

$$
P(-1)=1-a+b, \quad P(0)=b, \quad P(1)=1+a+b .
$$

The given condition gives

$$
2 b^{2}=(1-a+b)^{2}+(1+a+b)^{2}=2(1+b)^{2}+2 a^{2}=2+4 b+2 b^{2}+2 a^{2}
$$

Hence $a^{2}+2 b+1=0$. Observe

$$
1+a^{2}+b^{2}+2 a+2 b+2 a b=(1+a+b)^{2} \in \mathbb{Z}
$$

But $1, b^{2}, 2 a^{2}+4 b$ are all integers. Hence $4 a+4 a b \in \mathbb{Z}$. This gives $16 a^{2}(1+b)^{2}$ is an integer. But $a^{2}=-(2 b+1)$. Hence $16(2 b+1)(1+b)^{2}$ is an integer. But

$$
16(2 b+1)(1+b)^{2}=16\left(1+4 b+5 b^{2}+2 b^{3}\right)
$$

Hence $16 b\left(4+2 b^{2}\right)$ is an integer. If $b=0$, then $b$ is an integer. Otherwise, this shows that $b$ is a rational number. Because $b^{2} \in \mathbb{Z}$, it follows that $b$ is an integer. Since $a^{2}=-(2 b+1)$, we get that $a^{2}$ is an integer. Now $4 a(1+b) \in \mathbb{Z}$. If $b \neq-1$, then $a$ is rational and hence $a$ is an integer. If $b=-1$, then we see that $P(-1)=-a, P(0)=b=-1$ and $P(1)=a$. Hence $a^{2}, 1, a^{2}$ is an AP. This implies that $a^{2}=1$ and hence $a= \pm 1$.
3. Show that there are infinitely many triples $(x, y, z)$ of integers such that $x^{3}+y^{4}=z^{31}$.

Solution: Choose $x=2^{4 r}$ and $y=2^{3 r}$. Then the left side is $2^{12 r+1}$. If we take $z=2^{k}$, then we get $2^{12 r+1}=2^{31 k}$. Thus it is sufficient to prove that the equation $12 r+1=31 k$ has infinitely many solutions in integers. Observe that $(12 \times 18)+1=31 \times 7$. If we choose $r=31 l+18$ and $k=12 l+7$, we get

$$
12(31 l+18)+1=31(12 l+7)
$$

for all $l$. Choosing $l \in \mathbb{N}$, we get infinitely many $r=31 l+18$ and $k=12 l+7$ such that $12 r+1=31 k$. Going back we have infinitely many $(x, y, z)$ of integers satisfying the given equation.
4. Suppose 36 objects are placed along a circle at equal distances. In how many ways can 3 objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite?

Solution: One can choose 3 objects out of 36 objects in $\binom{36}{3}$ ways. Among these choices all would be together in 36 cases; exactly two will be together in $36 \times 32$ cases. Thus three objects can be chosen such that no two adjacent in $\binom{36}{3}-36-(36 \times 32)$ ways. Among these, furthrer, two objects will be diametrically opposite in 18 ways and the third would be on either semicircle in a non adjacent portion in $36-6=30$ ways. Thus required number is

$$
\binom{36}{3}-36-(36 \times 32)-(18 \times 30)=5412 .
$$

5. Let $A B C$ be a triangle with circumcircle $\Gamma$ and incentre $I$. Let the internal angle bisectors of $\angle A, \angle B$ and $\angle C$ meet $\Gamma$ in $A^{\prime}, B^{\prime}$ and $C^{\prime}$ respectively. Let $B^{\prime} C^{\prime}$ intersect $A A^{\prime}$ in $P$ and $A C$ in $Q$, and let $B B^{\prime}$ intersect $A C$ in $R$. Suppose the quadrilateral $P I R Q$ is a kite; that is, $I P=I R$ and $Q P=Q R$. Prove that $A B C$ is an equilateral triangle.
Solution: We first show that $A A^{\prime}$ is perpendicular to $B^{\prime} C^{\prime}$. Observe $\angle C^{\prime} A^{\prime} A=\angle C^{\prime} C A=$ $\angle C / 2 ; \angle A^{\prime} C^{\prime} C=\angle A^{\prime} A C=\angle A / 2$; and $\angle C C^{\prime} B^{\prime}=\angle C B B^{\prime}=\angle B / 2$. Hence

$$
\angle C^{\prime} A P+\angle A C^{\prime} P=\angle C^{\prime} A B+\angle B A P+\angle A C^{\prime} P=\frac{\angle C}{2}+\frac{\angle A}{2}+\frac{\angle B}{2}=90^{\circ} .
$$

It follows that $\angle A P C^{\prime}=\angle A^{\prime} P C^{\prime}=90^{\circ}$. Thus $\angle I P Q=90^{\circ}$. Since $P I R Q$ is a kite, we observe that $\angle I P R=\angle I R P$ and $\angle Q P R=\angle Q R P$. This implies that $\angle I R Q=90^{\circ}$. Hence the kite $I R Q P$ is also a cyclic quadrilateral. Since $\angle I R Q=90^{\circ}$, we see that $B B^{\prime} \perp A C$. Since $B B^{\prime}$ is the bisector of $\angle B$, we conclude that $\angle A=\angle C$.


We also observe that the triangles $I R C$ and $I P B^{\prime}$ are congruent triangles: they are similar, since $\angle I R C=\angle I P B^{\prime}=90^{\circ}$ and $\angle I C R=\angle C / 2=\angle I B^{\prime} P\left(=\angle B C C^{\prime}\right)$; besides $I R=I P$. Therefore $I C=I B^{\prime}$. But $B^{\prime} I=B^{\prime} C$. Thus $I B^{\prime} C$ is an equilateral triangle. This means $\angle B^{\prime} I C=60^{\circ}$ and hence $\angle I C R=30^{\circ}$. Therefore $\angle C / 2=30^{\circ}$. Hence $\angle A=\angle C=60^{\circ}$. It follows that $A B C$ is equilateral.
6. Show that there are infinitely many positive real numbers $a$ which are not integers such that $a(a-3\{a\})$ is an integer. (Here $\{a\}$ denotes the fractional part of $a$. For example $\{1.5\}=$ $0.5 ;\{-3.4\}=0.6$.)

Solution: We show that for each integer $n \geq 0$, the interval $(n, n+1)$ contains $a$ such that $a(a-3\{a\})$ is an integer. Put $a=n+f$, where $0<f<1$. Then $(n+f)(n-2 f)$ must be an integer. This means $2 f^{2}+n f$ must be an integer. Since $0<f<1$, we must have $0<2 f^{2}+n f<2+n$. Hence $2 f^{2}+n f \in\{1,2,3, \ldots, n+1\}$. Taking $2 f^{2}+n f=1$, we get a quadratic equation:

$$
2 f^{2}+n f-1=0
$$

Hence

$$
f=\frac{-n+\sqrt{n^{2}+8}}{4}, \text { and } a=n+\frac{-n+\sqrt{n^{2}+8}}{4}
$$

Thus we see that each $a$ in the set

$$
\left\{n+\frac{-n+\sqrt{n^{2}+8}}{4}: n \in \mathbb{N}\right\}
$$

is a real number, which is not an integer, such that $a(a-3\{a\})$ is an integer.
Remark: Each interval $(n, n+1)$ contains $n+1$ such numbers, for $n \geq 0, n$ an integer.
$\qquad$

