CRMO-2015 questions and solutions

1. Two circles Γ and Σ , with centres O and O', respectively, are such that O' lies on Γ . Let A be a point on Σ and M the midpoint of the segment AO'. If B is a point on Σ different from A such that AB is parallel to OM, show that the midpoint of AB lies on Γ .

Solution: Let *C* be the reflection of *O'* with respect to *O*. Then in triangle *O'AC*, the midpoints of the segments *O'A* and *O'C* are *M* and *O*, respectively. This implies *AC* is parallel to *OM*, and hence *B* lies on *AC*. Let the line *AC* intersect Γ again at *N*. Since *O'C* is a diameter of Γ it follows that $\angle O'NC = 90^{\circ}$. Since O'A = O'B, we can now conclude that *N* is the midpoint of the segment *AB*.

2. Let $P(x) = x^2 + ax + b$ be a quadratic polynomial where a and b are real numbers. Suppose $\langle P(-1)^2, P(0)^2, P(1)^2 \rangle$ is an arithmetic progression of integers. Prove that a and b are integers.

Solution: Observe that

$$P(-1) = 1 - a + b$$
, $P(0) = b$, $P(1) = 1 + a + b$.

The given condition gives

$$2b^{2} = (1 - a + b)^{2} + (1 + a + b)^{2} = 2(1 + b)^{2} + 2a^{2} = 2 + 4b + 2b^{2} + 2a^{2}.$$

Hence $a^2 + 2b + 1 = 0$. Observe

$$1 + a^2 + b^2 + 2a + 2b + 2ab = (1 + a + b)^2 \in \mathbb{Z}.$$

But $1, b^2, 2a^2 + 4b$ are all integers. Hence $4a + 4ab \in \mathbb{Z}$. This gives $16a^2(1+b)^2$ is an integer. But $a^2 = -(2b+1)$. Hence $16(2b+1)(1+b)^2$ is an integer. But

$$16(2b+1)(1+b)^2 = 16(1+4b+5b^2+2b^3).$$

Hence $16b(4+2b^2)$ is an integer. If b = 0, then b is an integer. Otherwise, this shows that b is a rational number. Because $b^2 \in \mathbb{Z}$, it follows that b is an integer. Since $a^2 = -(2b+1)$, we get that a^2 is an integer. Now $4a(1+b) \in \mathbb{Z}$. If $b \neq -1$, then a is rational and hence a is an integer. If b = -1, then we see that P(-1) = -a, P(0) = b = -1 and P(1) = a. Hence a^2 , $1, a^2$ is an AP. This implies that $a^2 = 1$ and hence $a = \pm 1$.

3. Show that there are infinitely many triples (x, y, z) of integers such that $x^3 + y^4 = z^{31}$.

Solution: Choose $x = 2^{4r}$ and $y = 2^{3r}$. Then the left side is 2^{12r+1} . If we take $z = 2^k$, then we get $2^{12r+1} = 2^{31k}$. Thus it is sufficient to prove that the equation 12r + 1 = 31k has infinitely many solutions in integers. Observe that $(12 \times 18) + 1 = 31 \times 7$. If we choose r = 31l + 18 and k = 12l + 7, we get

$$12(31l + 18) + 1 = 31(12l + 7),$$

for all l. Choosing $l \in \mathbb{N}$, we get infinitely many r = 31l + 18 and k = 12l + 7 such that 12r + 1 = 31k. Going back we have infinitely many (x, y, z) of integers satisfying the given equation.

4. Suppose 36 objects are placed along a circle at equal distances. In how many ways can 3 objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite?

Solution: One can choose 3 objects out of 36 objects in $\binom{36}{3}$ ways. Among these choices all would be together in 36 cases; exactly two will be together in 36 × 32 cases. Thus three objects can be chosen such that no two adjacent in $\binom{36}{3} - 36 - (36 \times 32)$ ways. Among these, further, two objects will be diametrically opposite in 18 ways and the third would be on either semicircle in a non adjacent portion in 36 - 6 = 30 ways. Thus required number is

$$\binom{36}{3} - 36 - (36 \times 32) - (18 \times 30) = 5412$$

5. Let ABC be a triangle with circumcircle Γ and incentre I. Let the internal angle bisectors of $\angle A$, $\angle B$ and $\angle C$ meet Γ in A', B' and C' respectively. Let B'C' intersect AA' in P and AC in Q, and let BB' intersect AC in R. Suppose the quadrilateral PIRQ is a kite; that is, IP = IR and QP = QR. Prove that ABC is an equilateral triangle.

Solution: We first show that AA' is perpendicular to B'C'. Observe $\angle C'A'A = \angle C'CA = \angle C/2$; $\angle A'C'C = \angle A'AC = \angle A/2$; and $\angle CC'B' = \angle CBB' = \angle B/2$. Hence

$$\angle C'AP + \angle AC'P = \angle C'AB + \angle BAP + \angle AC'P = \frac{\angle C}{2} + \frac{\angle A}{2} + \frac{\angle B}{2} = 90^{\circ}$$

It follows that $\angle APC' = \angle A'PC' = 90^{\circ}$. Thus $\angle IPQ = 90^{\circ}$. Since PIRQ is a kite, we observe that $\angle IPR = \angle IRP$ and $\angle QPR = \angle QRP$. This implies that $\angle IRQ = 90^{\circ}$. Hence the kite IRQP is also a cyclic quadrilateral. Since $\angle IRQ = 90^{\circ}$, we see that $BB' \perp AC$. Since BB' is the bisector of $\angle B$, we conclude that $\angle A = \angle C$.

We also observe that the triangles IRC and IPB' are congruent triangles: they are similar, since $\angle IRC = \angle IPB' = 90^{\circ}$ and $\angle ICR = \angle C/2 = \angle IB'P(=\angle BCC')$; besides IR = IP. Therefore IC = IB'. But B'I = B'C. Thus IB'C is an equilateral triangle. This means $\angle B'IC = 60^{\circ}$ and hence $\angle ICR = 30^{\circ}$. Therefore $\angle C/2 = 30^{\circ}$. Hence $\angle A = \angle C = 60^{\circ}$. It follows that ABC is equilateral.

6. Show that there are infinitely many positive real numbers a which are not integers such that $a(a - 3\{a\})$ is an integer. (Here $\{a\}$ denotes the fractional part of a. For example $\{1.5\} = 0.5$; $\{-3.4\} = 0.6$.)

Solution: We show that for each integer $n \ge 0$, the interval (n, n + 1) contains a such that $a(a - 3\{a\})$ is an integer. Put a = n + f, where 0 < f < 1. Then (n + f)(n - 2f) must be an integer. This means $2f^2 + nf$ must be an integer. Since 0 < f < 1, we must have $0 < 2f^2 + nf < 2 + n$. Hence $2f^2 + nf \in \{1, 2, 3, ..., n + 1\}$. Taking $2f^2 + nf = 1$, we get a quadratic equation:

$$2f^2 + nf - 1 = 0.$$

Hence

$$f = \frac{-n + \sqrt{n^2 + 8}}{4}$$
, and $a = n + \frac{-n + \sqrt{n^2 + 8}}{4}$.

Thus we see that each a in the set

$$\left\{n + \frac{-n + \sqrt{n^2 + 8}}{4} \, : \, n \in \mathbb{N}\right\}$$

is a real number, which is not an integer, such that $a(a - 3\{a\})$ is an integer.

Remark: Each interval (n, n + 1) contains n + 1 such numbers, for $n \ge 0$, n an integer.