CRMO-2015 questions and solutions

1. Let $A B C$ be a triangle. Let B^{\prime} and C^{\prime} denote respectively the reflection of B and C in the internal angle bisector of $\angle A$. Show that the triangles $A B C$ and $A B^{\prime} C^{\prime}$ have the same incentre.

Solution: Join $B B^{\prime}$ and $C C^{\prime}$. Let the internal angle bisector ℓ of $\angle A$ meet $B B^{\prime}$ in E and $C C^{\prime}$ in F. Since B^{\prime} is the reflection of B in ℓ, we observe that $B B^{\prime} \perp \ell$ and $B E=E B^{\prime}$. Hence B^{\prime} lies on $A C$. Similarly, C^{\prime} lies on the line $A B$.
Let D be the point of intersection of $B C$ and $B^{\prime} C^{\prime}$. Observe that $B B^{\prime} \| C^{\prime} C$. Moreover the triangles $A B C$ is congruent to $A B^{\prime} C^{\prime}$: this follows from the observation that $A B=A B^{\prime}$ and $A C=A C^{\prime}$ and the included angle $\angle A$ is common. Hence $B C^{\prime}=B^{\prime} C$ so that $C^{\prime} C B^{\prime} B$ is an isosceles trapezium. This means that the intesection
 point D of its diagonal lies on the perpendicular bisector of its parallel sides. Thus ℓ passes through D. We also observe that $C D=C^{\prime} D$.
Let I be the incentre of $\triangle A B C$. This means that $C I$ bisects $\angle C$. Hence $A I / I D=A C / C D$. But $A C=A C^{\prime}$ and $C D=C^{\prime} D$. Hence we also get that $A I / I D=A C^{\prime} / C^{\prime} D$. This implies that $C^{\prime} I$ bisects $\angle A C^{\prime} B^{\prime}$. Therefore the two angle bisectors of $\triangle A C^{\prime} B^{\prime}$ meet at I. This shows that I is also the incentre of $\triangle A C^{\prime} B^{\prime}$.
2. Let $P(x)=x^{2}+a x+b$ be a quadratic polynomial with real coefficients. Suppose there are real numbers $s \neq t$ such that $P(s)=t$ and $P(t)=s$. Prove that $b-s t$ is a root of the equation $x^{2}+a x+b-s t=0$.

Solution: We have

$$
\begin{aligned}
s^{2}+a s+b & =t \\
t^{2}+a t+b & =s
\end{aligned}
$$

This gives

$$
\left(s^{2}-t^{2}\right)+a(s-t)=(t-s)
$$

Since $s \neq t$, we obtain $s+t+a=-1$. Adding the equations, we obtain

$$
s^{2}+t^{2}+a(s+t)+2 b=(s+t)
$$

Therefore

$$
(s+t)^{2}-2 s t+a(s+t)+2 b=(s+t)
$$

Using $s+t=-(1+a)$, we obtain

$$
(1+a)^{2}-2 s t-a(1+a)+2 b=-1-a
$$

Simplification gives st $=1+a+b=P(1)$. This shows that $x=1$ is a root of $x^{2}+a x+b-s t=0$. Since the product of roots is $b-s t$, the other root is $b-s t$.
3. Find all integers a, b, c such that

$$
a^{2}=b c+1, \quad b^{2}=c a+1
$$

Solution: Suppose $a=b$. Then we get one equation: $a^{2}=a c+1$. This reduces to $a(a-c)=1$. Therefore $a=1, a-c=1$; and $a=-1, a-c=-1$. Thus we get $(a, b, c)=(1,1,0)$ and $(-1,-1,0)$.
If $a \neq b$, subtracting the second relation from the first we get

$$
a^{2}-b^{2}=c(b-a) .
$$

This gives $a+b=-c$. Substituting this in the first equation, we get

$$
a^{2}=b(-a-b)+1
$$

Thus $a^{2}+b^{2}+a b=1$. Multiplication by 2 gives

$$
(a+b)^{2}+a^{2}+b^{2}=2
$$

Thus $(a, b)=(1,-1),(-1,1),(1,0),(-1,0),(0,1),(0,-1)$. We get respectively $c=$ $0,0,-1,1,-1,1$. Thus we get the triples:

$$
(a, b, c)=(1,1,0),(-1,-1,0),(1,-1,0),(-1,1,0),(1,0,-1),(-1,0,1),(0,1,-1),(0,-1,1) .
$$

4. Suppose 32 objects are placed along a circle at equal distances. In how many ways can 3 objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite?

Solution: One can choose 3 objects out of 32 objects in $\binom{32}{3}$ ways. Among these choices all would be together in 32 cases; exactly two will be together in 32×28 cases. Thus three objects can be chosen such that no two adjacent in $\binom{32}{3}-32-(32 \times 28)$ ways. Among these, furthrer, two objects will be diametrically opposite in 16 ways and the third would be on either semicircle in a non adjacent portion in $32-6=26$ ways. Thus required number is

$$
\binom{32}{3}-32-(32 \times 28)-(16 \times 26)=3616 .
$$

5. Two circles Γ and Σ in the plane intersect at two distinct points A and B, and the centre of Σ lies on Γ. Let points C and D be on Γ and Σ, respectively, such that C, B and D are collinear. Let point E on Σ be such that $D E$ is parallel to $A C$. Show that $A E=A B$.

Solution: If O is the centre of Σ, then we have

$$
\begin{aligned}
& \angle A E B=\frac{1}{2} \angle A O B=\frac{1}{2}\left(180^{\circ}-\angle A C B\right) \\
& =\frac{1}{2} \angle E D B=\frac{1}{2}\left(180^{\circ}-\angle E A B\right)=90^{\circ}-\frac{1}{2} \angle E A B .
\end{aligned}
$$

But we know that $\angle A E B+\angle E A B+\angle E B A=180^{\circ}$.

Therefore

$$
\angle E B A=180^{\circ}-\angle A E B-\angle E A B=180^{\circ}-90^{\circ}+\frac{1}{2} \angle E A B-\angle E A B=90^{\circ}-\frac{1}{2} \angle E A B
$$

This shows that $\angle A E B=\angle E B A$ and hence $A E=A B$.
6. Find all real numbers a such that $4<a<5$ and $a(a-3\{a\})$ is an integer. (Here $\{a\}$ denotes the fractional part of a. For example $\{1.5\}=0.5 ;\{-3.4\}=0.6$.)

Solution: Let $a=4+f$, where $0<f<1$. We are given that $(4+f)(4-2 f)$ is an integer. This implies that $2 f^{2}+4 f$ is an integer. Since $0<f<1$, we have $0<2 f^{2}+4 f<6$. Therefore $2 f^{2}+4 f$ can take $1,2,3,4$ or 5 . Equating $2 f^{2}+4 f$ to each one of them and using $f>0$, we get

$$
f=\frac{-2+\sqrt{6}}{2}, \frac{-2+\sqrt{8}}{2}, \frac{-2+\sqrt{10}}{2}, \frac{-2+\sqrt{12}}{2}, \frac{-2+\sqrt{14}}{2}
$$

Therefore a takes the values:

$$
\begin{gathered}
a=3+\frac{\sqrt{6}}{2}, 3+\frac{\sqrt{8}}{2}, 3+\frac{\sqrt{10}}{2}, 3+\frac{\sqrt{12}}{2}, 3+\frac{\sqrt{14}}{2} . \\
-00
\end{gathered}
$$

