CRMO-2015 questions and solutions

1. In a cyclic quadrilateral ABCD, let the diagonals AC and BD intersect at X. Let the circumcircles of triangles AXD and BXC intersect again at Y. If X is the incentre of triangle ABY, show that $\angle CAD = 90^{\circ}$.

Solution: Given that X is the incentre of triangle ABY, we have $\angle BAX = \angle XAY$. Therefore, $\angle BDC = \angle BAC = \angle BAX = \angle XAY = \angle XDY = \angle BDY$. This shows that C, D, Y are collinear. Therefore, $\angle CYX + \angle XYD = 180^{\circ}$. But the left-hand side equals $(180^{\circ} - \angle CBD) + (180^{\circ} - \angle CAD)$. Since $\angle CBD = \angle CAD$, we obtain $180^{\circ} = 360^{\circ} - 2\angle CAD$. This shows that $\angle CAD = 90^{\circ}$.

2. Let $P_1(x) = x^2 + a_1x + b_1$ and $P_2(x) = x^2 + a_2x + b_2$ be two quadratic polynomials with integer coefficients. Suppose $a_1 \neq a_2$ and there exist integers $m \neq n$ such that $P_1(m) = P_2(n)$, $P_2(m) = P_1(n)$. Prove that $a_1 - a_2$ is even.

Solution: We have

$$m^{2} + a_{1}m + b_{1} = n^{2} + a_{2}n + b_{2}$$
$$n^{2} + a_{1}n + b_{1} = m^{2} + a_{2}m + b_{2}$$

Hence

$$(a_1 - a_2)(m + n) = 2(b_2 - b_1), \quad (a_1 + a_2)(m - n) = 2(n^2 - m^2).$$

This shows that $a_1 + a_2 = -2(n+m)$. Hence

$$4(b_2 - b_1) = a_2^2 - a_1^2$$

Since $a_1 + a_2$ and $a_1 - a_2$ have same parity, it follows that $a_1 - a_2$ is even.

3. Find all fractions which can be written simultaneously in the forms $\frac{7k-5}{5k-3}$ and $\frac{6l-1}{4l-3}$, for some integers k, l.

Solution: If a fraction is simultaneously in the forms $\frac{7k-5}{5k-3}$ and $\frac{6l-1}{4l-3}$, we must have

$$\frac{7k-5}{5k-3} = \frac{6l-1}{4l-3}.$$

This simplifies to kl + 8k + l - 6 = 0. We can write this in the form

$$(k+1)(l+8) = 14$$

Now 14 can be factored in 8 ways: 1×14 , 2×7 , 7×2 , 14×1 , $(-1) \times (-14)$, $(-2) \times (-7)$, $(-7) \times (-2)$ and $(-14) \times (-1)$. Thus we get 8 pairs:

$$(k,l) = (13,-7), (6,-6), (1,-1), (0,6), (-15,-9), (-8,-10), (-3,-15), (-2,-22).$$

These lead respectively to 8 fractions:

$$\frac{43}{31}, \quad \frac{31}{27}, \quad 1, \quad \frac{55}{39}, \quad \frac{5}{3}, \quad \frac{61}{43}, \quad \frac{19}{13}, \quad \frac{13}{9}$$

4. Suppose 28 objects are placed along a circle at equal distances. In how many ways can 3 objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite?

Solution: One can choose 3 objects out of 28 objects in $\binom{28}{3}$ ways. Among these choices all would be together in 28 cases; exactly two will be together in 28 × 24 cases. Thus three objects can be chosen such that no two adjacent in $\binom{28}{3} - 28 - (28 \times 24)$ ways. Among these, further, two objects will be diametrically opposite in 14 ways and the third would be on either semicircle in a non adjacent portion in 28 - 6 = 22 ways. Thus required number is

$$\binom{28}{3} - 28 - (28 \times 24) - (14 \times 22) = 2268$$

5. Let ABC be a right triangle with $\angle B = 90^{\circ}$. Let E and F be respectively the mid-points of AB and AC. Suppose the incentre I of triangle ABC lies on the circumcircle of triangle AEF. Find the ratio BC/AB.

Solution: Draw $ID \perp AC$. Then ID = r, the inradius of $\triangle ABC$. Observe $EF \parallel BC$ and hence $\angle AEF = \angle ABC = 90^{\circ}$. Hence $\angle AIF = 90^{\circ}$. Therefore $ID^2 = FD \cdot DA$. If a > c, then FA > DA and we have

$$DA = s - a$$
, and $FD = FA - DA = \frac{b}{2} - (s - a)$.

Thus we obtain

$$r^{2} = \frac{(b+c-a)(a-c)}{4}$$

But r = (c + a - b)/2. Thus we obtain

$$(c+a-b)^2 = (b+c-a)(a-c).$$

Simplification gives 3b = 3a + c. Squaring both sides and using $b^2 = c^2 + a^2$, we obtian 4c = 3a. Hence BC/BA = a/c = 4/3.

(If $a \leq c$, then I lies outside the circumcircle of AEF.)

6. Find all real numbers a such that 3 < a < 4 and $a(a-3\{a\})$ is an integer. (Here $\{a\}$ denotes the fractional part of a. For example $\{1.5\} = 0.5$; $\{-3.4\} = 0.6$.)

Solution: Let a = 3 + f, where 0 < f < 1. We are given that (3 + f)(3 - 2f) is an integer. This implies that $2f^2 + 3f$ is an integer. Since 0 < f < 1, we have $0 < 2f^2 + 3f < 5$. Therefore $2f^2 + 3f$ can take 1, 2, 3 or 4. Equating $2f^2 + 3f$ to each one of them and using f > 0, we get

$$f = \frac{-3 + \sqrt{17}}{4}, \quad \frac{1}{2}, \quad \frac{-3 + \sqrt{33}}{4}, \quad \frac{-3 + \sqrt{41}}{4}.$$

Therefore a takes the values:

$$a = 3 + \frac{-3 + \sqrt{17}}{4}, \quad 3\frac{1}{2}, \quad 3 + \frac{-3 + \sqrt{33}}{4}, \quad 3 + \frac{-3 + \sqrt{41}}{4}.$$