Solutions to RMO-2014 problems

1. Let $A B C D$ be an isosceles trapezium having an incircle; let $A B$ and $C D$ be the parallel sides and let $C E$ be the perpendicular from C on to $A B$. Prove that $C E$ is equal to the geometric mean of $A B$ and $C D$.

Solution: Since $A B C D$ has incircle, we have $A B+C D=A D+B C$. We alos know that $A D=B C$ and $\angle A=\angle B$. Draw $D F \perp A B$. Then $\triangle D F C \cong \triangle C E B$. Hence $F E=C D$, and $A F=E B$. Now

$$
C E^{2}=B C^{2}-B E^{2}
$$

Observe $2 B C=B C+A D=A B+C D=2 F E+2 E B$. Hence $B C=F E+E B$. Thus

$$
C E^{2}=(F E+E B)^{2}-B E^{2}=(F E+2 E B) F E=A B \cdot C D
$$

This shows that $C E$ is the geometric mean of $A B$ and $C D$.
2. If x and y are positive real numbers, prove that

$$
4 x^{4}+4 y^{3}+5 x^{2}+y+1 \geq 12 x y
$$

Solution: We have from AM-GM inequality,

$$
4 x^{4}+1 \geq 4 x^{2}, \quad 4 y^{3}+y=y\left(4 y^{2}+1\right) \geq 4 y^{2}
$$

Hence

$$
\begin{aligned}
4 x^{4}+4 y^{3}+5 x^{2}+y+1 & \geq 4 x^{2}+4 y^{2}+5 x^{2} \\
& =9 x^{2}+4 y^{2} \\
& \geq 2(\sqrt{9 \times 4}) x y \\
& =12 x y
\end{aligned}
$$

3. Determine all pairs $m>n$ of positive integers such that

$$
1=\operatorname{gcd}(n+1, m+1)=\operatorname{gcd}(n+2, m+2)=\cdots=\operatorname{gcd}(m, 2 m-n) .
$$

Solution: Observe that $1=\operatorname{gcd}(n+r, m+r)=\operatorname{gcd}(n+r, m-n)$. Thus each of the $m-n$ consecutive positive integers $n+1, n+2, \ldots, m$ is coprime to $m-n$. Since one of these is necessarily a multiple of $m-n$, this is possible only when $m-n=1$. Hence each pair is of the form $(n, n+1)$, where $n \in \mathbb{N}$.
4. What is the minimal area of a right-angled triangle whose inradius is 1 unit?

Solution: Let $A B C$ be the right-angled triangle with $\angle B=90^{\circ}$. Let I be its incentre and D be the point where the incircle touches $A B$. Then $s-b=A D=r=1$. We also know that $[A B C]=r s=r(a+b+c) / 2$ and $[A B C]=a c / 2$. Thus

$$
\frac{a c}{2}=\frac{a+b+c}{2}=(a+c)-\frac{a+c-b}{2}=(a+c)-1 .
$$

Using AM-GM inequality, we get

$$
\frac{a c}{2}=a+c-1 \geq 2 \sqrt{a c}-1
$$

Taking $\sqrt{a c}=x$, we get $x^{2}-4 x+2 \geq 0$. Hence

$$
x \geq \frac{4+2 \sqrt{2}}{2}=2+\sqrt{2}
$$

Finally,

$$
[A B C]=\frac{a c}{2} \geq \frac{(2+\sqrt{2})^{2}}{2}=3+2 \sqrt{2}
$$

Thus the least area of such a triangle is $3+2 \sqrt{2}$.
5. Let $A B C$ be an acute-angled triangle and let I be its incentre. Let the incircle of triangle $A B C$ touch $B C$ in D. The incircle of the triangle $A B D$ touches $A B$ in E; the incircle of the triangle $A C D$ touches $B C$ in F. Prove that B, E, I, F are concyclic.

Solution: We know $B D=s-b$ and $D C=$ $s-c$, where s is the semiperimeter of $\triangle A B C$. Let the incircle of $\triangle A B D$ touch $B C$ in P and let $A D=l$. Then

$$
D P=\frac{l+B D-c}{2}=\frac{l+s-c-b}{2} .
$$

Similarly, we can compute $D F=$ $\frac{l+s-c-b}{2}$. Therefore $D P=D F$. But $I D \perp B C$. Hence I is on the per-
 pendicular bisector of $P F$. This gives $I P=I F$.

Draw $I Q \perp A B$. Then B, Q, I, D are concyclic so that $\angle Q I D=180^{\circ}-\angle B$. Since $D P=D F$ and $I P=I F$, the triangles $I D P$ and $I D F$ are congruent. But $I D P$ is congruent to $I Q E$. It follows that $\triangle I D F \cong \triangle I Q E$. This shows that $\angle Q I E=\angle D I F$. Therefore $\angle Q I D=\angle E I F$. But $\angle Q I D=180^{\circ}-\angle B$. Hence $\angle E I F=180^{\circ}-\angle B$. Therefore B, E, I, F are concyclic.
6. In the adjacent figure, can the numbers $1,2,3,4, \cdots, 18$ be placed, one on each line segment, such that the sum of the numbers on the three line segments meeting at each point is divisible by 3 ?

Solution: We group the numbers 1 to 18 in to 3 groups: those leaving remainder 0 when divided by 3 ; those leaving remainder 1 ; and those leaving remainder 2 . Thus the groups are:

$$
\{3,6,9,12,15,18\},\{1,4,7,10,13,16\},\{2,5,8,11,14,17\}
$$

Now we put the numbers in such a way that each of the three line segments converging to a vertex gets one number from each set. For example, here is one such arrangement:

\qquad

