Solutions to RMO-2014 problems

1. Let $A B C$ be an acute-angled triangle and suppose $\angle A B C$ is the largest angle of the triangle. Let R be its circumcentre. Suppose the circumcircle of triangle $A R B$ cuts $A C$ again in X. Prove that $R X$ is pependicular to $B C$.

Solution: Extend $R X$ to meet $B C$ in E. We show that $\angle X E C=90^{\circ}$. Join $R A$, $R B$ and $B X$. Observe that $\angle A X B=$ $\angle A R B=2 \angle C$ and $\angle B X R=\angle B A R=$ $90^{\circ}-\angle C$. Hence $\angle E X C=180^{\circ}-2 \angle C-$ $\left(90^{\circ}-\angle C\right)=90^{\circ}-\angle C$. This shows that $\angle C E X=90^{\circ}$.

2. Find all real numbers x and y such that

$$
x^{2}+2 y^{2}+\frac{1}{2} \leq x(2 y+1)
$$

Solution: We write the inequality in the form

$$
2 x^{2}+4 y^{2}+1-4 x y-2 x \leq 0
$$

Thus $\left(x^{2}-4 x y+4 y^{2}\right)+\left(x^{2}-2 x+1\right) \leq 0$. Hence

$$
(x-2 y)^{2}+(x-1)^{2} \leq 0
$$

Since x, y are real, we know that $(x-2 y)^{2} \geq 0$ and $(x-1)^{2} \geq 0$. Hence it follows that $(x-2 y)^{2}=0$ and $(x-1)^{2}=0$. Therefore $x=1$ and $y=1 / 2$.
3. Prove that there does not exist any positive integer $n<2310$ such that $n(2310-n)$ is a multiple of 2310 .
Solution: Suppose there exists n such that $0<n<2310$ and $n(2310-n)=2310 k$. Then $n^{2}=2310(n-k)$. But $2310=2 \times 3 \times 5 \times 7 \times 11$, the product of primes. Hence $n-k=2310 l^{2}$ for some l. But $n<2310$ and hence $n-k<2310$. Hence $l=0$. This forces $n=k$ and hence $n^{2}=2310(n-k)=0$. Thus $n=0$ and we have a contradiction.
4. Find all positive real numbers x, y, z such that

$$
2 x-2 y+\frac{1}{z}=\frac{1}{2014}, \quad 2 y-2 z+\frac{1}{x}=\frac{1}{2014}, \quad 2 z-2 x+\frac{1}{y}=\frac{1}{2014}
$$

Solution: Adding the three equations, we get

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{3}{2014}
$$

We can also write the equations in the form

$$
2 z x-2 z y+1=\frac{z}{2014}, \quad 2 x y-2 x z+1=\frac{x}{2014}, \quad 2 y z-2 y x+1=\frac{y}{2014} .
$$

Adding these, we also get

$$
2014 \times 3=x+y+z
$$

Therefore

$$
\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+y+z)=\frac{3}{2014} \times(2014 \times 3)=9 .
$$

Using AM-GM inequality, we therefore obtain

$$
9=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+y+z) \geq 9 \times(x y z)^{1 / 3}\left(\frac{1}{x y z}\right)^{1 / 3}=9 .
$$

Hence equality holds in AM-GM inequality and we conclude $x=y=z$. Thus

$$
\frac{1}{x}=\frac{1}{2014}
$$

which gives $x=2014$. We conclude

$$
x=2014, \quad y=2014, \quad z=2014
$$

5. Let $A B C$ be a triangle. Let X be on the segment $B C$ such that $A B=A X$. Let $A X$ meet the circumcircle Γ of triangle $A B C$ again at D. Show that the circumcentre of $\triangle B D X$ lies on Γ.

Solution: Draw perpendicular from A to $B C$ and extend it to meet Γ in F. We show that F is the circumcentre of $\triangle B D X$. Since $A B=A X$, we observe that F lies on the perpendicular bisector of $B X$. Join $C F$ and $C D$. We observe that $\angle A B X=\angle C D X$ and $\angle A X B=\angle C X D$. Hence $\triangle A B X$ is similar to $\triangle C D X$. In particular $\triangle C D X$ is isosceles.

Moreover, $\angle B C F=\angle B A F$ and $\angle D C F=\angle D A F$. Since $A F$ is the perpendicular bisector of $B X$, it also bisects $\angle B A X$. It follows that $C F$ bisects $\angle D C X$ and hence F lies on the perpendicular bisector of $D X$. Together F is the circumcentre of $\triangle B X D$.
6. For any natural number n, let $S(n)$ denote the sum of the digits of n. Find the number of all 3-digit numbers n such that $S(S(n))=2$.

Solution: Observe that $S(S(n))=2$ implies that $S(n)=2,11$ or 20 . Hence we have to find the number of all all 3 digit numbers $\overline{a b c}$ such that $a+b+c=2,11$
and 20. In fact we can enumerate all these:

$$
\begin{gathered}
a+b+c=2: \overline{a b c}=101,110,200 ; \\
a+b+c=11 ; \overline{a b c}=902,920,290,209,911,191,119,803,830,308,380 \\
812,821,182,128,218,281,731,713,317,371,137,173,722,272,227,740,704, \\
407,470,650,605,560,506,641,614,416,461,164,146,623,632,362,326,263,236 ; \\
a+b+c=20 ; \overline{a b c}=992,929,299,983,938,398,389,839,893,974,947,794,749 \\
479,497,965,956,659,695,596,569,884,848,488,
\end{gathered}
$$

$875,875,785,758,578,587,866,686,668,776,767,677$.
There are totally 85 three digit numbers having second digital sum equal to 2 .
\qquad

