
Solutions to RMO-2014 problems

1. In an acute-angled triangle ABC, ∠ABC is the largest angle. The perpendicu-
lar bisectors of BC and BA intersect AC at X and Y respectively. Prove that
circumcentre of triangle ABC is incentre of triangle BXY .

Solution: Let D and E be the mid-points of BC and AB respectively. Since X
lies on the perpendicular bisector of BC, we have XB = XC. Since XD ⊥ BC
and XB = XC, it follows that XD bisects ∠BXC. Similarly, Y E bisects ∠BY A.
Hence the point of intersection of XD and Y E is the incentre of 4BXY . But
this point of intersection is also the circumcentre of 4ABC, being the point of
intersection of perpendicular bisectors of BC and AB.

2. Let x, y, z be positive real numbers. Prove that
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Solution: We write the inequality in the form
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We observe that x2 + y2 ≥ 2xy. Hence x2 + y2 − xy ≥ xy. Multiplying both sides
by (x + y), we get

x3 + y3 = (x + y)(x2 − xy + y2) ≥ (x + y)xy.
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Adding three inequalities, we get the required result.

3. Find all pairs of (x, y) of positive integers such that 2x + 7y divides 7x + 2y.

Solution: Let d = gcd(x, y). Then x = dx1 and y = dy1. We observe that 2x + 7y
divides 7x + 2y if and only if 2x1 + 7y1 divides 7x1 + 2y1. This means 2x1 + 7y1
should divide 49x1 + 14y1. But 2x1 + 7y1 divides 4x1 + 14y1. Hence 2x1 + 7y1
divides 45x1. Similarly, we can show that 2x1 + 7y1 divides 45y1. Hence 2x1 + 7y1
divides gcd(45x1, 45y1) = 45 gcd(x1, y1) = 45. Hence

2x1 + 7y1 = 9, 15 or 45.



If 2x1 + 7y1 = 9, then x1 = 1, y1 = 1. Similarly, 2x1 + 7y1 = 15 gives x1 = 4,
y1 = 1. If 2x1 + 7y1 = 45, then we get

(x1, y1) = (19, 1), (12, 3), (5, 5).

Thus all solutions are of the form

(x, y) = (d, d), (4d, d), (19d, d), (12d, 3d), (5d, 5d).

4. For any positive integer n > 1, let P (n) denote the largest prime not exceeding n.
Let N(n) denote the next prime larger than P (n). (For example P (10) = 7 and
N(10) = 11, while P (11) = 11 and N(11) = 13.) If n + 1 is a prime number, prove
that the value of the sum
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Solution: Let p and q be two consecutive primes, p < q. If we take any n such that
p ≤ n < q, we see that P (n) = p and N(n) = q. Hence the term 1

pq occurs in the

sum q − p times. The contribution from such terms is q−p
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Here p is used for the prime preceeding n + 1.

5. Let ABC be a triangale with AB > AC. Let P be a point on the line AB beyond
A such that AP + PC = AB. Let M be the mid-point of BC and let Q be the
point on the side AB such that CQ ⊥ AM . Prove that BQ = 2AP .

Solution: Extend BP to F such PF =
PC. Then AF = AP +PF = AP +PC =
AB. Hence A is the mid-point of BF .
Since M is the mid-point of BC, it fol-
lows that AM ‖ FC. But AM ⊥ CQ.
Hence FC ⊥ CQ at C. Therefore QCF
is a rigt-angled triangle. Since PC = PF ,
it follows that ∠PCF = ∠PFC. Hence
∠PQC = ∠PCQ which gives PQ = PC =
PF . This implies that P is the mid-point
of QF .

Thus we have AP + AQ = PF and BQ + QA = AP + PF . This gives

2AP + AQ = PF + AP = BQ + QA.

We conclude that BQ = 2AP .
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6. Suppose n is odd and each square of an n×n grid is arbitrarily filled with either by
1 or by −1. Let rj and ck denote the product of all numbers in j-th row and k-th
column respectively, 1 ≤ j, k ≤ n. Prove that
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ck 6= 0.

Solution: Suppose we change +1 to −1 in a square. Then the product of the
numbers in that row changes sign. Similarly, the product of numbers in the column
also changes sign. Hence the sum
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decreases by 4 or increases by 4 or remains same. Hence the new sum is congruent
to the old sum modulo 4. Let us consider the situation when all the squares have
+1. Then S = n + n = 2n = 2(2m + 1) = 4m + 2. This means the sum S is is
always of the form 4l+ 2 for any configuration. Therefore the sum is not equal to 0.
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