## Solutions to RMO-2014 problems

1. In an acute-angled triangle $A B C, \angle A B C$ is the largest angle. The perpendicular bisectors of $B C$ and $B A$ intersect $A C$ at $X$ and $Y$ respectively. Prove that circumcentre of triangle $A B C$ is incentre of triangle $B X Y$.

Solution: Let $D$ and $E$ be the mid-points of $B C$ and $A B$ respectively. Since $X$ lies on the perpendicular bisector of $B C$, we have $X B=X C$. Since $X D \perp B C$ and $X B=X C$, it follows that $X D$ bisects $\angle B X C$. Similarly, $Y E$ bisects $\angle B Y A$. Hence the point of intersection of $X D$ and $Y E$ is the incentre of $\triangle B X Y$. But this point of intersection is also the circumcentre of $\triangle A B C$, being the point of intersection of perpendicular bisectors of $B C$ and $A B$.
2. Let $x, y, z$ be positive real numbers. Prove that

$$
\frac{y^{2}+z^{2}}{x}+\frac{z^{2}+x^{2}}{y}+\frac{x^{2}+y^{2}}{z} \geq 2(x+y+z)
$$

Solution: We write the inequality in the form

$$
\frac{x^{2}}{y}+\frac{y^{2}}{x}+\frac{y^{2}}{z}+\frac{z^{2}}{y}+\frac{z^{2}}{x}+\frac{x^{2}}{z} \geq 2(x+y+z)
$$

We observe that $x^{2}+y^{2} \geq 2 x y$. Hence $x^{2}+y^{2}-x y \geq x y$. Multiplying both sides by $(x+y)$, we get

$$
x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \geq(x+y) x y
$$

Thus

$$
\frac{x^{2}}{y}+\frac{y^{2}}{x} \geq x+y
$$

Similarly, we obtain

$$
\frac{y^{2}}{z}+\frac{z^{2}}{y} \geq y+z, \quad \frac{z^{2}}{x}+\frac{x^{2}}{z} \geq x+y
$$

Adding three inequalities, we get the required result.
3. Find all pairs of $(x, y)$ of positive integers such that $2 x+7 y$ divides $7 x+2 y$.

Solution: Let $d=\operatorname{gcd}(x, y)$. Then $x=d x_{1}$ and $y=d y_{1}$. We observe that $2 x+7 y$ divides $7 x+2 y$ if and only if $2 x_{1}+7 y_{1}$ divides $7 x_{1}+2 y_{1}$. This means $2 x_{1}+7 y_{1}$ should divide $49 x_{1}+14 y_{1}$. But $2 x_{1}+7 y_{1}$ divides $4 x_{1}+14 y_{1}$. Hence $2 x_{1}+7 y_{1}$ divides $45 x_{1}$. Similarly, we can show that $2 x_{1}+7 y_{1}$ divides $45 y_{1}$. Hence $2 x_{1}+7 y_{1}$ divides $\operatorname{gcd}\left(45 x_{1}, 45 y_{1}\right)=45 \operatorname{gcd}\left(x_{1}, y_{1}\right)=45$. Hence

$$
2 x_{1}+7 y_{1}=9,15 \text { or } 45 .
$$

If $2 x_{1}+7 y_{1}=9$, then $x_{1}=1, y_{1}=1$. Similarly, $2 x_{1}+7 y_{1}=15$ gives $x_{1}=4$, $y_{1}=1$. If $2 x_{1}+7 y_{1}=45$, then we get

$$
\left(x_{1}, y_{1}\right)=(19,1),(12,3),(5,5)
$$

Thus all solutions are of the form

$$
(x, y)=(d, d),(4 d, d),(19 d, d),(12 d, 3 d),(5 d, 5 d)
$$

4. For any positive integer $n>1$, let $P(n)$ denote the largest prime not exceeding $n$. Let $N(n)$ denote the next prime larger than $P(n)$. (For example $P(10)=7$ and $N(10)=11$, while $P(11)=11$ and $N(11)=13$.) If $n+1$ is a prime number, prove that the value of the sum

$$
\frac{1}{P(2) N(2)}+\frac{1}{P(3) N(3)}+\frac{1}{P(4) N(4)}+\cdots+\frac{1}{P(n) N(n)}=\frac{n-1}{2 n+2} .
$$

Solution: Let $p$ and $q$ be two consecutive primes, $p<q$. If we take any $n$ such that $p \leq n<q$, we see that $P(n)=p$ and $N(n)=q$. Hence the term $\frac{1}{p q}$ occurs in the sum $q-p$ times. The contribution from such terms is $\frac{q-p}{p q}=\frac{1}{p}-\frac{1}{q}$. Since $n+1$ is prime, we obtain

$$
\begin{aligned}
& \frac{1}{P(2) N(2)}+\frac{1}{P(3) N(3)}+\frac{1}{P(4) N(4)}+\cdots+\frac{1}{P(n) N(n)} \\
& \quad=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots+\left(\frac{1}{p}-\frac{1}{n+1}\right)=\frac{1}{2}-\frac{1}{n+1}=\frac{n-1}{2 n+2} .
\end{aligned}
$$

Here $p$ is used for the prime preceeding $n+1$.
5. Let $A B C$ be a triangale with $A B>A C$. Let $P$ be a point on the line $A B$ beyond $A$ such that $A P+P C=A B$. Let $M$ be the mid-point of $B C$ and let $Q$ be the point on the side $A B$ such that $C Q \perp A M$. Prove that $B Q=2 A P$.
Solution: Extend $B P$ to $F$ such $P F=$
$P C$. Then $A F=A P+P F=A P+P C=$
$A B$. Hence $A$ is the mid-point of $B F$. Since $M$ is the mid-point of $B C$, it follows that $A M \| F C$. But $A M \perp C Q$. Hence $F C \perp C Q$ at $C$. Therefore $Q C F$ is a rigt-angled triangle. Since $P C=P F$, it follows that $\angle P C F=\angle P F C$. Hence $\angle P Q C=\angle P C Q$ which gives $P Q=P C=$
 $P F$. This implies that $P$ is the mid-point of $Q F$.
Thus we have $A P+A Q=P F$ and $B Q+Q A=A P+P F$. This gives

$$
2 A P+A Q=P F+A P=B Q+Q A
$$

We conclude that $B Q=2 A P$.
6. Suppose $n$ is odd and each square of an $n \times n$ grid is arbitrarily filled with either by 1 or by -1 . Let $r_{j}$ and $c_{k}$ denote the product of all numbers in $j$-th row and $k$-th column respectively, $1 \leq j, k \leq n$. Prove that

$$
\sum_{j=1}^{n} r_{j}+\sum_{k=1}^{n} c_{k} \neq 0
$$

Solution: Suppose we change +1 to -1 in a square. Then the product of the numbers in that row changes sign. Similarly, the product of numbers in the column also changes sign. Hence the sum

$$
S=\sum_{j=1}^{n} r_{j}+\sum_{k=1}^{n} c_{k}
$$

decreases by 4 or increases by 4 or remains same. Hence the new sum is congruent to the old sum modulo 4 . Let us consider the situation when all the squares have +1 . Then $S=n+n=2 n=2(2 m+1)=4 m+2$. This means the sum $S$ is is always of the form $4 l+2$ for any configuration. Therefore the sum is not equal to 0 .

