Solutions to RMO-2014 problems

1. Let $A B C$ be a triangle and let $A D$ be the perpendicular from A on to $B C$. Let K, L, M be points on $A D$ such that $A K=K L=$ $L M=M D$. If the sum of the areas of the shaded regions is equal to the sum of the areas of the unshaded regions, prove that
 $B D=D C$.

Solution: let $B D=4 x, D C=4 y$ and $A D=4 h$. Then the sum of the areas of the shaded regions is

$$
\frac{1}{2} h(x+(y+2 y)+(2 x+3 x)+(3 y+4 y))=\frac{h(6 x+10 y)}{2} .
$$

The sum of the areas of the unshaded regions is

$$
\frac{1}{2} h(y+(x+2 x)+(2 y+3 y)+(3 x+4 x))=\frac{h(10 x+6 y)}{2} .
$$

Therefore the given condition implies that

$$
6 x+10 y=10 x+6 y
$$

This gives $x=y$. Hence $B D=D C$.
2. Let $a_{1}, a_{2}, \ldots, a_{2 n}$ be an arithmetic progression of positive real numbers with common difference d. Let
(i) $a_{1}^{2}+a_{3}^{2}+\cdots+a_{2 n-1}^{2}=x$, (ii) $a_{2}^{2}+a_{4}^{2}+\cdots+a_{2 n}^{2}=y$, and (iii) $a_{n}+a_{n+1}=z$.

Express d in terms of x, y, z, n.
Solution: Observe that

$$
y-x=\left(a_{2}^{2}-a_{1}^{2}\right)+\left(a_{4}^{2}-a_{3}^{2}\right)+\cdots+\left(a_{2 n}^{2}-a_{2 n-1}^{2}\right) .
$$

The general difference is

$$
a_{2 k}^{2}-a_{2 k-1}^{2}=\left(a_{2 k}+a_{2 k-1}\right) d=\left(2 a_{1}+((2 k-1)+(2 k-2)) d\right) d
$$

Therefore

$$
y-x=\left(2 n a_{1}+(1+2+3+\cdots(2 n-1)) d\right) d=n d\left(2 a_{1}+(2 n-1) d\right) .
$$

We also observe that

$$
z=a_{n}+a_{n+1}=2 a_{1}+(2 n-1) d
$$

It follows that $y-x=n d z$. Hence $d=(y-x) / n z$.
3. Suppose for some positive integers r and s, the digits of 2^{r} is obtained by permuting the digits of 2^{s} in decimal expansion. Prove that $r=s$.

Solution: Suppose $s \leq r$. If $s<r$ then $2^{s}<2^{r}$. Since the number of digits in 2^{s} and 2^{r} are the same, we have $2^{r}<10 \times 2^{s}<2^{s+4}$. Thus we have $2^{s}<2^{r}<2^{s+4}$ which gives $r=s+1$ or $s+2$ or $s+3$. Since 2^{r} is obtained from 2^{s} by permuting its digits, $2^{r}-2^{s}$ is divisible by 9 . If $r=s+1$, we see that $2^{r}-2^{s}=2^{s}$ and it is clearly not divisible by 9 . Similarly, $2^{s+2}-2^{s}=3 \times 2^{s}$ and $2^{s+3}-2^{s}=7 \times 2^{s}$ and none of these is divisible by 9 . We conclude that $s<r$ is not possible. Hence $r=s$.
4. Is it possible to write the numbers $17,18,19, \ldots, 32$ in a 4×4 grid of unit squares, with one number in each square, such that the product of the numbers in each 2×2 sub-grids $A M R G, G R N D, M B H R$ and
 $R H C N$ is divisible by 16 ?

Solution: NO! If the product in each 2×2 sub-square is divisible by 16 , then the product of all the numbers is divisible by $16 \times 16 \times 16 \times 16=2^{16}$. But it is easy to see that

$$
17 \times 18 \times 19 \times \cdots \times 32=2^{15} k
$$

where k is an odd number. Hence the product of all the numbers in the grid is not divisible by 2^{16}.
5. Let $A B C$ be an acute-angled triangle and let H be its ortho-centre. For any point P on the circum-circle of triangle $A B C$, let Q be the point of intersection of the line $B H$ with the line $A P$. Show that there is a unique point X on the circum-circle of $A B C$ such that for every point $P \neq A, B$, the circum-circle of $H Q P$ pass through X.

Solution: We consider two possibilities: Q lying between A and P; and P lying between A and Q. (See the figures.)
In the first case, we observe that

$$
\angle H X C=\angle H X P+\angle P X C=\angle A Q B+\angle P A C
$$

since Q, H, X, P are concyclic and P, A, X, C are also concyclic. Thus we get

$$
\angle H X C=\angle A Q E+\angle Q A E=90^{\circ}
$$

because $B E \perp A C$.

In the second case, we have

$$
\angle H X C=\angle H X P+\angle P X C=\angle H Q P+\angle P A C
$$

the first follows from H, X, Q, P are concyclic; the second follows from the concyclicity of A, X, C, P. Again $B E \perp A C$ shows that $\angle H X C=90^{\circ}$.
Thus for any point $P \neq A, B$ on the circumcircle of $A B C$, the point X of intersection of the circumcircles of $A B C$ and $H P Q$ is such that $\angle H X C=90^{\circ}$. This means X is precisely the point of intersection of the circumcircles of $H E C$ and $A B C$, which is independent of P.
6. Let $x_{1}, x_{2}, \ldots, x_{2014}$ be positive real numbers such that $\sum_{j=1}^{2014} x_{j}=1$. Determine with proof the smallest constant K such that

$$
K \sum_{j=1}^{2014} \frac{x_{j}^{2}}{1-x_{j}} \geq 1
$$

Solution: Let us take the general case: $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ are positive real numbers such that $\sum_{k=1}^{n} x_{k}=1$. Then

$$
\sum_{k=1}^{n} \frac{x_{k}^{2}}{1-x_{k}}=\sum_{k=1}^{n} \frac{x_{k}^{2}-1}{1-x_{k}}+\sum_{k=1}^{n} \frac{1}{1-x_{k}}=\sum_{k=1}^{n}\left(-1-x_{k}\right)+\sum_{k=1}^{n} \frac{1}{1-x_{k}}
$$

Now the first sum is $-n-1$. We can estimate the second sum using AM-HM inequality:

$$
\sum_{k=1}^{n} \frac{1}{1-x_{k}} \geq \frac{n^{2}}{\sum_{k=1}^{n}\left(1-x_{k}\right)}=\frac{n^{2}}{n-1}
$$

Thus we obtain

$$
\sum_{k=1}^{n} \frac{x_{k}^{2}}{1-x_{k}} \geq-(1+n)+\frac{n^{2}}{n-1}=\frac{1}{n-1}
$$

Here equality holds if and only if all x_{j} 's are equal. Thus we get the smallest constant K such that

$$
K \sum_{j=1}^{2014} \frac{x_{j}^{2}}{1-x_{j}} \geq 1
$$

to be $2014-1=2013$.

