1. Let $A B C$ be an isosceles triangle with $A B=A C$ and let Γ denote its circumcircle. A point D is on arc $A B$ of Γ not containing C. A point E is on $\operatorname{arc} A C$ of Γ not containing B. If $A D=C E$ prove that $B E$ is parallel to $A D$.
2. Find all triples (p, q, r) of primes such that $p q=r+1$ and $2\left(p^{2}+q^{2}\right)=r^{2}+1$.
3. A finite non-empty set of integers is called 3 -good if the sum of its elements is divisible by 3 . Find the number of non-empty 3 -good subsets of $\{0,1,2, \ldots, 9\}$.
4. In a triangle $A B C$, points D and E are on segments $B C$ and $A C$ such that $B D=3 D C$ and $A E=4 E C$. Point P is on line $E D$ such that D is the midpoint of segment $E P$. Lines $A P$ and $B C$ intersect at point S. Find the ratio $B S / S D$.
5. Let a_{1}, b_{1}, c_{1} be natural numbers. We define

$$
a_{2}=\operatorname{gcd}\left(b_{1}, c_{1}\right), \quad b_{2}=\operatorname{gcd}\left(c_{1}, a_{1}\right), \quad c_{2}=\operatorname{gcd}\left(a_{1}, b_{1}\right)
$$

and

$$
a_{3}=\operatorname{lcm}\left(b_{2}, c_{2}\right), \quad b_{3}=\operatorname{lcm}\left(c_{2}, a_{2}\right), \quad c_{3}=\operatorname{lcm}\left(a_{2}, b_{2}\right)
$$

Show that $\operatorname{gcd}\left(b_{3}, c_{3}\right)=a_{2}$.
6. Let $P(x)=x^{3}+a x^{2}+b$ and $Q(x)=x^{3}+b x+a$, where a, b are non-zero real numbers. Suppose that the roots of the equation $P(x)=0$ are the reciprocals of the roots of the equation $Q(x)=0$. Prove that a and b are integers. Find the greatest common divisor of $P(2013!+1)$ and $Q(2013!+1)$.

