Model solutions of RMO 2012 (Mumbai region)

1. Let α be the common zero of the three given polynomials. Then

$$
\begin{align*}
& \alpha^{2}+a \alpha+b=0 ; \tag{1}\\
& \alpha^{2}+\alpha+a b=0 ; \tag{2}\\
& a \alpha^{2}+\alpha+b=0 . \tag{3}
\end{align*}
$$

(1)-(2) yields

$$
\begin{equation*}
(a-1)(\alpha-b)=0 . \tag{4}
\end{equation*}
$$

(3)-(2) yields

$$
\begin{equation*}
(a-1)\left(\alpha^{2}-b\right)=0 . \tag{5}
\end{equation*}
$$

From (4) we conclude that $a=1$ or $\alpha=b$ and from (5) we see that $a=1$ or $\alpha^{2}=b$. But if $a=1$ then the three polynomials are same as $x^{2}+x+b$, contradicting the fact that they are different. Therefore we must have $\alpha=b$ and $\alpha^{2}=b$. Thus $\alpha=\alpha^{2}$ i.e $\alpha=0$ or $\alpha=1$. If $\alpha=0$ then $b=0$ and this is not a feasible solution since we need to find $b \neq 0$. Hence $\alpha=1$, which yields $b=1$ and from (1), $a=-2$.
Thus $a=-2, b=1$ and the polynomials are $x^{2}-2 x+1, x^{2}+x-2$ and $-2 x^{2}+x+1$.
2. Observe that $n^{2}+3 n+51=(n-5)(n+8)+91$. If $13 \mid n^{2}+3 n+51$, then $13 \mid(n-5)(n+8)$. Therefore $13 \mid n-5$ or $13 \mid n+8$. Observe that

$$
13|n-5 \Leftrightarrow 13|(n+8)-13 \Leftrightarrow 13 \mid n+8 ;
$$

Now, $21 n^{2}+89 n+44=(7 n+4)(3 n+11)=\{(3(n+8)+4(n-5)\}\{2(n+8)+(n-5)\}$. Writing $n+8=13 m_{1}$ and $n-5=13 m_{2}$, where m_{1} and m_{2} are positive integers we get

$$
21 n^{2}+89 n+44=169\left(3 m_{1}+4 m_{2}\right)\left(2 m_{1}+m_{2}\right) .
$$

Therefore 169 divides $21 n^{2}+89 n+44$.

Comments:

There were different solutions to this problem by the students. We present two such solutions.

First solution:

Observe that $n^{2}+3 n+51 \equiv 0 \equiv\left\{(n-5)^{2}+26\right\}(\bmod 13) \Rightarrow n \equiv 5(\bmod 13)$. Now $21 n^{2}+89 n+44=(7 n+4)(3 n+11) \equiv 0(\bmod 169)$ because $7 n+4 \equiv 39 \equiv 0(\bmod 13)$ and $3 n+11 \equiv 26 \equiv 0(\bmod 13)$.

Second solution:

$13\left|n^{2}+3 n+51 \Rightarrow 13\right|(n+8)(n-5) \Rightarrow n \equiv 5(\bmod 13)$. Let $n_{k}=13 k+5, k$ an integer, and $f\left(n_{k}\right)=21 n_{k}^{2}+89 n_{k}+44$. Then

$$
f\left(n_{k+1}\right)-f\left(n_{k}\right)=169(44+42 k) \equiv 0(\bmod 169) \Rightarrow f\left(n_{k}\right) \equiv f\left(n_{0}\right)(\bmod 169) .
$$

As $f\left(n_{0}\right)=1014 \equiv 0(\bmod 169)$ we conclude that $f\left(n_{k}\right) \equiv 0(\bmod 169)$.
3. Writing $x=[x]+\{x\}$ in the given equation and simplifying we obtain $2^{5\{x\}}=\frac{5.2^{2[x]}}{2^{2[x]}-11}$. As $0 \leq\{x\}<1,1 \leq 2^{5\{x\}}<32$ and hence the right hand side is positive. Therefore $2^{2[x]}-11>0$, i.e $[x] \geq 2$. Also, $5<\frac{5.2^{2[x]}}{2^{2[x]}-11} \leq 16$. Hence there is a solution for every real x with $[x] \geq 2$ of which only one is rational, namely $x=14 / 5$.
4. Since $A E B=90^{\circ}$ and $E D$ is perpendicular to $A B, E D^{2}=A D \cdot D B$. Now

$$
[A B E]^{2}=[A B C][A B H] \Leftrightarrow E D^{2}=H D \cdot C D \Leftrightarrow A D \cdot D B=H D \cdot C D .
$$

But triangles $A D H$ and $C D B$ are similar because $\angle D A H=\angle B C D, \angle A D H=\angle C D B$.

Therefore, $A D / C D=H D / D B$, i.e $A D \cdot D B=H D \cdot C D$. Thus $[A B E]^{2}=[A B C][A B H]$.
5. We have $\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=1$ and $1 \leq a \leq b \leq c$. Therefore $1 / a \geq 1 / b \geq 1 / c$ and

$$
1=\frac{1}{a}+\frac{2}{b}+\frac{3}{c} \leq \frac{1}{a}+\frac{2}{a}+\frac{3}{a}=\frac{6}{a} \Rightarrow a \leq 6 .
$$

Since a is a prime and $1 \leq a \leq 6$, the possible values of a are 2,3 and 5 .
Case 1: $a=2$.
$a=2 \Rightarrow \frac{2}{b}+\frac{3}{c}=\frac{1}{2}$. Now $\frac{2}{b}<\frac{1}{2} \Rightarrow b \geq 5$ and $1 / b \geq 1 / c \Rightarrow \frac{1}{2}=\frac{2}{b}+\frac{3}{c} \leq \frac{5}{b} \Rightarrow b \leq 10$. Hence $5 \leq b \leq 10$. Substituting the possible values of b in the equation $\frac{2}{b}+\frac{3}{c}=\frac{1}{2}$ we obtain $(b, c)=(5,30),(6,18),(7,14),(8,12),(10,10)$ as the admissible pairs. Therefore the solutions in this case are $(a, b, c)=(2,5,30),(2,6,18),(2,7,14),(2,8,12),(2,10,10)$.

Case 2: $a=3$.
Emulating the method outlined in the analysis of Case 1 we find that $4 \leq b \leq 7$ and the solutions in this case are $(a, b, c)=(3,4,18),(3,6,9)$.

Case 3: $a=5$.
There is no solution in this case.
In summary, the solutions are $(a, b, c)=(2,5,30),(2,6,18),(2,7,14),(2,8,12),(2,10,10),(3,4,18),(3,6,9)$.
6. WSUM $=70656$. Partition the set of all subsets of S into two sets -T 1 - consisting of those subsets which contain the element 1 and T 2 those which do not contain 1 . For every subset S 2 belonging to T 2 , there is a unique subset S 1 belonging to T 1 which is $\{1\} \cup S 2$. Consider any element $a \geq 2$ of S . Let S 2 be such that the element a occupies an even numbered position in it. It will occupy an odd numbered position in S_{1}. The total contribution to WSUM by a from both these subsets is $5 a$. The same is true if a occpies an odd numbered position in S_{2}. Therefore, the total contribution of the element a to WSUM is $5 a$ multiplied by the number of subsets of T_{2} that contain a. The number of these subsets is 2^{8}. The contribution of the element 1 to WSUM is clearly 3×2^{9}. Therefore the sum of all WSUMs is

$$
T=3 \times 2^{9}+5 \times 2^{8} \times \sum_{j=2}^{10} j=276 \times 2^{8}=70656
$$

Aliter: The total contribution of the element $a \geq 2$ over all subsets is $t=\sum_{j=0}^{a-1}\binom{a-1}{j}(2+$ $\xi(j)) 2^{10-a} a=0$. Here $\xi(j)=0$ if j is odd and $\xi(j)=1$ if j is even. $\binom{a-1}{j}$ is the number of j-element subsets of $\{1,2, \ldots, a-1\}$ and 2^{10-a} is the total number of subsets of $\{a+1, a+$ $2, \ldots, 10\}$. Simplifying, we get $t=2.2^{9} a+2^{8} a=5.2^{8} a$.
7. O, E, and X are collinear. Join O with A, B and C. Triangles $O C X$ and $C E X$ are similar.

Therefore $X C / X O=X E / X C$, i.e $X C^{2}=X O \cdot X E$. But $X C^{2}=X B \cdot X A$. Hence $X B \cdot X A=X E \cdot X O$ implying B, A, O, E are concyclic. Therefore $\angle O A B=180^{\circ}-\angle O E B=$ 40°. So, $\angle A O B=180^{\circ}-2 \angle O A B=100^{\circ}$.
8. Put $x=2 a, y=2 b$ and $z=2 c$. The problem reduces to showing

$$
\frac{1}{(a-1)(b-1)(c-1)}+\frac{8}{(a+1)(b+1)(c+1)} \leq \frac{1}{4}
$$

subject to $1 / a+1 / b+1 / c=1$. Observe that $a>1, b>1, c>1$ and $a-1=a\left(\frac{1}{b}+\frac{1}{c}\right) \geq \frac{2 a}{\sqrt{b c}}$ (by A.M-G.M inequality). Similarly we get $b-1 \geq \frac{2 b}{\sqrt{c a}}$ and $c-1 \geq \frac{2 c}{\sqrt{a b}}$. Multiplying these and taking the reciprocal we obtain

$$
\frac{1}{(a-1)(b-1)(c-1)} \leq \frac{1}{8} \ldots(\mathrm{I})
$$

Next observe that $\frac{a+1}{a-1}=1+\frac{2}{a-1} \geq \frac{2 \sqrt{2}}{\sqrt{a-1}}$ whence $a+1 \geq 2 \sqrt{2(a-1)}$. Similarly we obtain $b+1 \geq 2 \sqrt{2(b-1)}$ and $c+1 \geq 2 \sqrt{2(c-1)}$. Multiplying these yields

$$
(a+1)(b+1)(c+1) \geq 16 \sqrt{2(a-1)(b-1)(c-1)} \geq 16 \sqrt{2.8}=64
$$

Therefore

$$
\frac{8}{(a+1)(b+1)(c+1)} \leq \frac{1}{8} \ldots(\mathrm{II})
$$

By adding (I) and (II) we get

$$
\frac{1}{(a-1)(b-1)(c-1)}+\frac{8}{(a+1)(b+1)(c+1)} \leq \frac{1}{4}
$$

Comments:

We present another method which many students had adopted. By the A.M-G.M-H.M inequality,

$$
\frac{a+b+c}{3} \geq \sqrt[3]{a b c} \geq \frac{3}{1 / a+1 / b+1 / c}=3
$$

Thus $a+b+c \geq 9$ and $a b c \geq 27$. Using these two inequalities we obtain

$$
(a-1)(b-1)(c-1)=a b c-(a b+b c+c a)+(a+b+c)-1 \geq 8
$$

$$
(a+1)(b+1)(c+1)=a b c+(a b+b c+c a)+(a+b+c)+1=2 a b c+(a+b+c)+1 \geq 2(27)+9+1=64
$$

From these two inequalities we get

$$
\frac{1}{(a-1)(b-1)(c-1)}+\frac{8}{(a+1)(b+1)(c+1)} \leq \frac{1}{4}
$$

