1. Let \(ABC \) be an acute-angled triangle and let \(D, E, F \) be the feet of perpendiculars from \(A, B, C \) respectively to \(BC, CA, AB \). Let the perpendiculars from \(F \) to \(CB, CA, AD, BE \) meet them in \(P, Q, M, N \) respectively. Prove that \(P, Q, M, N \) are collinear.

Solution: Observe that \(C, Q, F, P \) are concyclic. Hence
\[
\angle CQP = \angle CFP = 90^\circ - \angle FCP = \angle B.
\]
Similarly the concyclicity of \(F, M, Q, A \) gives
\[
\angle AQN = 90^\circ + \angle QFM = 90^\circ + \angle FAM = 90^\circ + 90^\circ - \angle B = 180^\circ - \angle B.
\]
Thus we obtain \(\angle CQP + \angle AQN = 180^\circ \). It follows that \(Q, N, P \) lie on the same line.

![Diagram](https://via.placeholder.com/150)

We can similarly prove that \(\angle CPQ + \angle BPM = 180^\circ \). This implies that \(P, M, Q \) are collinear. Thus \(M, N \) both lie on the line joining \(P \) and \(Q \).

2. Find the least possible value of \(a + b \), where \(a, b \) are positive integers such that 11 divides \(a + 13b \) and 13 divides \(a + 11b \).

Solution: Since 13 divides \(a + 11b \), we see that 13 divides \(a - 2b \) and hence it also divides \(6a - 12b \). This in turn implies that \(13|(6a + b) \). Similarly \(11|(a + 13b) \Rightarrow 11|(a + 2b) \Rightarrow 11|(6a + 12b) \Rightarrow 11|(6a + b) \). Since \(\gcd(11, 13) = 1 \), we conclude that \(143|(6a + b) \). Thus we may write \(6a + b = 143k \) for some natural number \(k \). Hence
\[
6a + 6b = 143k + 5b = 144k + 6b - (k + b).
\]
This shows that 6 divides \(k + b \) and hence \(k + b \geq 6 \). We therefore obtain
\[
6(a + b) = 143k + 5b = 138k + 5(k + b) \geq 138 + 5 \times 6 = 168.
\]
It follows that \(a + b \geq 28 \). Taking \(a = 23 \) and \(b = 5 \), we see that the conditions of the problem are satisfied. Thus the minimum value of \(a + b \) is 28.

3. If \(a, b, c \) are three positive real numbers, prove that

\[
\frac{a^2 + 1}{b + c} + \frac{b^2 + 1}{c + a} + \frac{c^2 + 1}{a + b} \geq 3.
\]

Solution: We use the trivial inequalities \(a^2 + 1 \geq 2a \), \(b^2 + 1 \geq 2b \) and \(c^2 + 1 \geq 2c \). Hence we obtain
\[
\frac{a^2 + 1}{b + c} + \frac{b^2 + 1}{c + a} + \frac{c^2 + 1}{a + b} \geq \frac{2a}{b + c} + \frac{2b}{c + a} + \frac{2c}{a + b}.
\]
Adding 6 both sides, this is equivalent to

\[
(2a + 2b + 2c) \left(\frac{1}{b + c} + \frac{1}{c + a} + \frac{1}{a + b} \right) \geq 9.
\]

Taking \(x = b + c, y = c + a, z = a + b \), this is equivalent to

\[
(x + y + z) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right) \geq 9.
\]

This is a consequence of AM-GM inequality.

Alternately: The substitutions \(b + c = x, c + a = y, a + b = z \) leads to

\[
\sum \frac{2a}{b+c} = \sum \frac{y + z - x}{x} = \sum \left(\frac{x}{y} + \frac{y}{x} \right) - 3 \geq 6 - 3 = 3.
\]

4. A \(6 \times 6 \) square is dissected into 9 rectangles by lines parallel to its sides such that all these rectangles have integer sides. Prove that there are always two congruent rectangles.

Solution: Consider the dissection of the given \(6 \times 6 \) square in to non-congruent rectangles with least possible areas. The only rectangle with area 1 is an \(1 \times 1 \) rectangle. Similarly, we get \(1 \times 2, 1 \times 3 \) rectangles for areas \(2, 3 \) units. In the case of 4 units we may have either a \(1 \times 4 \) rectangle or a \(2 \times 2 \) square. Similarly, there can be a \(1 \times 5 \) rectangle for area 5 units and \(1 \times 6 \) or \(2 \times 3 \) rectangle for 6 units. Any rectangle with area 7 units must be \(1 \times 7 \) rectangle, which is not possible since the largest side could be 6 units. And any rectangle with area 8 units must be a \(2 \times 4 \) rectangle. If there is any dissection of the given \(6 \times 6 \) square in to 9 non-congruent rectangles with areas \(a_1 \leq a_2 \leq a_3 \leq a_4 \leq a_5 \leq a_6 \leq a_7 \leq a_8 \leq a_9 \), then we observe that

\[
a_1 \geq 1, \ a_2 \geq 2, \ a_3 \geq 3, \ a_4 \geq 4, \ a_5 \geq 4, \ a_6 \geq 5, \ a_7 \geq 6, \ a_8 \geq 6, \ a_9 \geq 8,
\]

and hence the total area of all the rectangles is

\[
a_1 + a_2 + \cdots + a_9 \geq 1 + 2 + 3 + 4 + 4 + 5 + 6 + 6 + 8 = 39 > 36,
\]

which is the area of the given square. Hence if a \(6 \times 6 \) square is dissected in to 9 rectangles as stipulated in the problem, there must be two congruent rectangles.

5. Let \(ABCD \) be a quadrilateral in which \(AB \) is parallel to \(CD \) and perpendicular to \(AD \); \(AB = 3CD \); and the area of the quadrilateral is 4. If a circle can be drawn touching all the sides of the quadrilateral, find its radius.

Solution: Let \(P, Q, R, S \) be the points of contact of in-circle with the sides \(AB, BC, CD, DA \) respectively. Since \(AD \) is perpendicular to \(AB \) and \(AB \) is parallel to \(DC \), we see that \(AP = AS = SD = DR = r \), the radius of the inscribed circle. Let \(BP = BQ = y \) and \(CQ = CR = x \). Using \(AB = 3CD \), we get \(r + y = 3(r + x) \).
Since the area of $ABCD$ is 4, we also get

$$4 = \frac{1}{2} AD(AB + CD) = \frac{1}{2}(2r)(4(r + x)).$$

Thus we obtain $r(r + x) = 1$. Using Pythagoras theorem, we obtain $BC^2 = BK^2 + CK^2$. However $BC = y + x$, $BK = y - x$ and $CK = 2r$. Substituting these and simplifying, we get $xy = r^2$. But $r + y = 3(r + x)$ gives $y = 2r + 3x$. Thus $r^2 = x(2r + 3x)$ and this simplifies to $(r - 3x)(r + x) = 0$. We conclude that $r = 3x$. Now the relation $r(r + x) = 1$ implies that $4r^2 = 3$, giving $r = \sqrt{3}/2$.

6. Prove that there are infinitely many positive integers n such that $n(n+1)$ can be expressed as a sum of two positive squares in at least two different ways. (Here $a^2 + b^2$ and $b^2 + a^2$ are considered as the same representation.)

Solution: Let $Q = n(n+1)$. It is convenient to choose $n = m^2$, for then Q is already a sum of two squares: $Q = m^2(m^2 + 1) = (m^2)^2 + m^2$. If further m^2 itself is a sum of two squares, say $m^2 = p^2 + q^2$, then

$$Q = (p^2 + q^2)(m^2 + 1) = (pm + q)^2 + (p - qm)^2.$$

Note that the two representations for Q are distinct. Thus, for example, we may take $m = 5k, p = 3k, q = 4k$, where k varies over natural numbers. In this case $n = m^2 = 25k^2$, and

$$Q = (25k^2)^2 + (5k)^2 = (15k^2 + 4k)^2 + (20k^2 - 3k)^2.$$

As we vary k over natural numbers, we get infinitely many numbers of the form $n(n+1)$ each of which can be expressed as a sum of two squares in two distinct ways.

7. Let X be the set of all positive integers greater than or equal to 8 and let $f : X \to X$ be a function such that $f(x + y) = f(xy)$ for all $x \geq 4, y \geq 4$. If $f(8) = 9$, determine $f(9)$.

Solution: We observe that

$$f(9) = f(4 + 5) = f(4 \cdot 5) = f(20) = f(16 + 4) = f(16 \cdot 4) = f(64) = f(8 \cdot 8) = f(8 + 8) = f(16) = f(4 \cdot 4) = f(4 + 4) = f(8).$$

Hence if $f(8) = 9$, then $f(9) = 9$. (This is one string. There may be other different ways of approaching $f(8)$ from $f(9)$. The important thing to be observed is the fact that the rule $f(x + y) = f(xy)$ applies only when x and y are at least 4. One may get strings using numbers x and y which are smaller than 4, but that is not valid. For example

$$f(9) = f(3 \cdot 3) = f(3 + 3) = f(6) = f(4 + 2) = f(4 \cdot 2) = f(8),$$

is not a valid string.)