Indian National Physics Olympiad - 2012 Solutions

Please note that alternate/equivalent solutions may exist. Brief solutions are given below.

1. (a) $\omega_{i+1}=\frac{7}{13} \omega_{i}+\frac{6}{13} \frac{v}{r}$
(b) $\omega^{*}=\frac{v}{r}$

Argument : Initially ω_{i} increases until it reaches a value $v=\omega^{*} r$, i.e. the speed of the falling ball. Thereafter the ball merely "touches" the sphere and does not impart it any momentum.
(c) $\omega_{i}=\frac{v}{r}\left(1-\left(\frac{7}{13}\right)^{i}\right)$ $i=0,1,2,3, \ldots \ldots$
or $\omega_{i}=\frac{v}{r}\left(1-\left(\frac{7}{13}\right)^{i-1}\right)$

$$
i=1,2,3,
$$

(d) $\omega^{*}=\frac{v}{r}$
2. (a) $v_{y}=\frac{R^{2}}{(2 x+R)^{2}} v_{x}$
(b) See figure below:

(c) Speed $=2.22 \mathrm{~km} \cdot \mathrm{hr}^{-1}$
3. (a) $\Gamma=\frac{m_{a} g}{R} \frac{(\gamma-1)}{\gamma}$
(b) For $m_{a}=29.0 \mathrm{~kg} \cdot \mathrm{kmol}^{-1} ; \Gamma=$ approx $10 \mathrm{~K} \cdot \mathrm{~km}^{-1}$
(c) $\alpha=\frac{\gamma}{\gamma-1}$
(d) approximately 30.0 km
(e) $p_{s}=p_{s 0} \exp \left[\frac{L m_{v}}{R}\left(\frac{1}{T_{s 0}}-\frac{1}{T}\right)\right]$
where $T_{s 0}$ and $p_{s 0}$ are the initial points for the integration. A convenient choice would be the triple point of water.
(f) At z_{c} atmospheric pressure should be equal to saturation pressure. Condition is

$$
p_{0}\left(\frac{T_{0}-\Gamma z_{c}}{T_{0}}\right)^{\gamma / 1-\gamma}=p_{s 0} \exp \left[\frac{L m_{v}}{R}\left(\frac{1}{T_{s 0}}-\frac{1}{T_{0}-\Gamma z_{c}}\right)\right]
$$

4. (a) Magnetic field $= \begin{cases}\frac{\mu_{0} N I}{l} \hat{k} & \rho<r \\ 0 & \rho>r\end{cases}$

Value of magnetic field $= \begin{cases}1.26 \times 10^{-2} \mathrm{~T} & \rho<r \\ 0 & \rho>r\end{cases}$ where ρ is the radial distance.
(b) $L=\frac{\mu_{0} N^{2} \pi r^{2}}{l}$

Value of $L=1.97 \times 10^{-2} \mathrm{H}$
(c) $E=3.95 \mathrm{~J}$
(d) $i=\frac{e}{R}\left(1-e^{-R t / L}\right)+i_{0} e^{-R t / L} \quad$ if $i_{0} \neq 0$
(e) $e=i R+L \frac{d i}{d t}-i \frac{L v}{l+v t}$
where $L=\mu_{0} N^{2} \pi r^{2} /(l+v t)$
(f) Electric field $= \begin{cases}\frac{\mu_{0} N i_{0} \omega \rho}{2 l} \sin (\omega t) & \rho<r \\ \frac{\mu_{0} N i_{0} \omega r^{2}}{2 \rho l} \sin (\omega t) & \rho>r\end{cases}$
(g) The plot of E with radial distance:

Lines of forces: Note, the lines of force are dense upto $\rho=r$ and increasingly sparse thereafter.

5. (a) Since $\hbar \omega_{0}<E_{b}$, hence no ionisation by a single photon is possible.
(b) Speed of electron $=\left|-\frac{e F_{0}}{m \omega} \sin (\omega t)\right|$
(c) Average kinetic energy $=\frac{e^{2} F_{0}^{2}}{4 m \omega^{2}}$
(d) $F_{0}=1.5 \times 10^{3} \mathrm{~V} \cdot \mathrm{~m}^{-1}$
(e) Potential energy $=-\frac{e^{2}}{4 \pi \epsilon_{0} r}+e F_{0} z$
(f) See figure below:

(g) $F_{0}=\frac{E^{2} \pi \epsilon_{0}}{e^{3}}$
(h) approx $174 \mathrm{~V} \cdot \mathrm{~m}^{-1}$ which is physically possible.

