
Problems and Solutions: INMO-2015

1. Let ABC be a right-angled triangle with ∠B = 90◦. Let BD be the
altitude from B on to AC. Let P , Q and I be the incentres of triangles
ABD, CBD and ABC respectively. Show that the circumcentre of of
the triangle PIQ lies on the hypotenuse AC.

Solution: We begin with the following lemma:
Lemma: Let XY Z be a triangle with ∠XY Z = 90 + α. Construct an
isosceles triangle XEZ, externally on the side XZ, with base angle
α. Then E is the circumcentre of 4XY Z.

Proof of the Lemma: Draw ED ⊥
XZ. Then DE is the perpendicu-
lar bisector of XZ. We also observe
that ∠XED = ∠ZED = 90 − α. Ob-
serve that E is on the perpendicu-
lar bisector of XZ. Construct the
circumcircle of XY Z. Draw per-
pendicular bisector of XY and let
it meet DE in F . Then F is the
circumcentre of 4XY Z. Join XF .
Then ∠XFD = 90−α. But we know
that ∠XED = 90− α. Hence E = F .
Let r1, r2 and r be the inradii of the triangles ABD, CBD and ABC
respectively. Join PD and DQ. Observe that ∠PDQ = 90◦. Hence

PQ2 = PD2 +DQ2 = 2r21 + 2r22.

Let s1 = (AB + BD + DA)/2. Observe that BD = ca/b and AD =
√
AB2 −BD2 =

√
c2 −

(
ca
b

)2
= c2/b. This gives s1 = cs/b. But r1 =

s1 − c = (c/b)(s− b) = cr/b. Similarly, r2 = ar/b. Hence

PQ2 = 2r2
(
c2 + a2

b2

)
= 2r2.

Consider 4PIQ. Observe that
∠PIQ = 90+(B/2) = 135. Hence PQ
subtends 90◦ on the circumference
of the circumcircle of 4PIQ. But
we have seen that ∠PDQ = 90◦.
Now construct a circle with PQ as
diameter. Let it cut AC again in K.
It follows that ∠PKQ = 90◦ and the
points P,D,K,Q are concyclic. We
also notice ∠KPQ = ∠KDQ = 45◦

and ∠PQK = ∠PDA = 45◦.



Thus PKQ is an isosceles right-angled triangle with KP = KQ. Ther-
fore KP 2 +KQ2 = PQ2 = 2r2 and hence KP = KQ = r.

Now ∠PIQ = 90 + 45 and ∠PKQ = 2 × 45◦ = 90◦ with KP = KQ = r.
Hence K is the circumcentre of 4PIQ.

(Incidentally, This also shows that KI = r and hence K is the point
of contact of the incircle of 4ABC with AC.)

Solution 2: Here we use compu-
tation to prove that the point of
contact K of the incircle with AC
is the circumcentre of 4PIQ. We
show that KP = KQ = r. Let r1
and r2 be the inradii of triangles
ABD and CBD respectively. Draw
PL ⊥ AC and QM ⊥ AC. If s1 is
the semiperimeter of 4ABD, then
AL = s1 −BD.

But

s1 =
AB +BD +DA

2
, BD =

ca

b
, AD =

c2

b

Hence s1 = cs/b. This gives r1 = s1−c = cr/b, AL = s1−BD = c(s−a)/b.
Hence KL = AK − AL = (s− a)− c(s−a)

b
= (b−c)(s−a)

b
. We observe that

2r2 =
(c+ a− b)2

2
=
c2 + a2 + b2 − 2bc− 2ab+ 2ca

2
= (b2−ba−bc+ac) = (b−c)(b−a).

This gives

(s− a)(b− c) = (s− b+ b− a)(b− c) = r(b− c) + (b− a)(b− c)
= r(b− c) + 2r2 = r(b− c+ c+ a− b) = ra.

Thus KL = ra/b. Finally,

KP 2 = KL2 + LP 2 =
r2a2

b2
+
r2 + c2

b2
= r2.

Thus KP = r. Similarly, KQ = r. This gives KP = KI = KQ = r and
therefore K is the circumcentre of 4KIQ.

(Incidentally, this also shows that KL = ca/b = r2 and KM = r1.)

2. For any natural number n > 1, write the infinite decimal expansion
of 1/n (for example, we write 1/2 = 0.49̄ as its infinite decimal expan-
sion, not 0.5). Determine the length of the non-periodic part of the
(infinite) decimal expansion of 1/n.

Solution: For any prime p, let νp(n) be the maximum power of p
dividing n; ie pνp(n) divides n but not higher power. Let r be the



length of the non-periodic part of the infinite decimal expansion of
1/n.
Write

1

n
= 0.a1a2 · · · arb1b2 · · · bs.

We show that r = max(ν2(n), ν5(n)).
Let a and b be the numbers a1a2 · · · ar and b = b1b2 · · · bs respectively.
(Here a1 and b1 can be both 0.) Then

1

n
=

1

10r

(
a+

∑
k≥1

b

(10s)k

)
=

1

10r

(
a+

b

10s − 1

)
.

Thus we get 10r(10s − 1) = n
(
(10s − 1)a + b

)
. It shows that r ≥

max(ν2(n), ν5(n)). Suppose r > max(ν2(n), ν5(n)). Then 10 divides b− a.
Hence the last digits of a and b are equal: ar = bs. This means

1

n
= 0.a1a2 · · · ar−1bsb1b2 · · · bs−1.

This contradicts the definition of r. Therefore r = max(ν2(n), ν5(n)).

3. Find all real functions f from R→ R satisfying the relation

f(x2 + yf(x)) = xf(x+ y).

Solution: Put x = 0 and we get f
(
yf(0)

)
= 0. If f(0) 6= 0, then yf(0)

takes all real values when y varies over real line. We get f(x) ≡ 0.
Suppose f(0) = 0. Taking y = −x, we get f

(
x2 − xf(x)

)
= 0 for all real

x.
Suppose there exists x0 6= 0 in R such that f(x0) = 0. Putting x = x0
in the given relation we get

f
(
x20
)

= x0f(x0 + y),

for all y ∈ R. Now the left side is a constant and hence it follows
that f is a constant function. But the only constant function which
satisfies the equation is identically zero function, which is already
obtained. Hence we may consider the case where f(x) 6= 0 for all
x 6= 0.
Since f

(
x2 − xf(x)

)
= 0, we conclude that x2 − xf(x) = 0 for all x 6= 0.

This implies that f(x) = x for all x 6= 0. Since f(0) = 0, we conclude
that f(x) = x for all x ∈ R.
Thus we have two functions: f(x) ≡ 0 and f(x) = x for all x ∈ R.

4. There are four basket-ball players A,B,C,D. Initially, the ball is
with A. The ball is always passed from one person to a different
person. In how many ways can the ball come back to A after seven
passes? (For example A → C → B → D → A → B → C → A and



A → D → A → D → C → A → B → A are two ways in which the ball
can come back to A after seven passes.)

Solution: Let xn be the number of ways in which A can get back the
ball after n passes. Let yn be the number of ways in which the ball
goes back to a fixed person other than A after n passes. Then

xn = 3yn−1,

and
yn = xn−1 + 2yn−1.

We also have x1 = 0, x2 = 3, y1 = 1 and y2 = 2.

Eliminating yn and yn−1, we get xn+1 = 3xn−1 + 2xn. Thus

x3 = 3x1 + 2x2 = 2× 3 = 6;

x4 = 3x2 + 2x3 = (3× 3) + (2× 6) = 9 + 12 = 21;

x5 = 3x3 + 2x4 = (3× 6) + (2× 21) = 18 + 42 = 60;

x6 = 3x4 + 2x5 = (3× 21) + (2× 60) = 63 + 120 = 183;

x7 = 3x5 + 2x6 = (3× 60) + (2× 183) = 180 + 366 = 546.

Alternate solution: Since the ball goes back to one of the other 3
persons, we have

xn + 3yn = 3n,

since there are 3n ways of passing the ball in n passes. Using xn =
3yn−1, we obtain

xn−1 + xn = 3n−1,

with x1 = 0. Thus

x7 = 36 − x6 = 36 − 35 + x5 = 36 − 35 + 34 − x4 = 36 − 35 + 34 − 33 + x3

= 36 − 35 + 34 − 33 + 32 − x2 = 36 − 35 + 34 − 33 + 32 − 3

= (2× 35) + (2× 33) + (2× 3) = 486 + 54 + 6 = 546.

5. Let ABCD be a convex quadrilateral. Let the diagonals AC and BD
intersect in P . Let PE, PF , PG and PH be the altitudes from P on
to the sides AB, BC, CD and DA respectively. Show that ABCD has
an incircle if and only if

1

PE
+

1

PG
=

1

PF
+

1

PH
.

Solution: Let AP = p, BP = q, CP = r, DP = s; AB = a, BC = b,
CD = c and DA = d. Let ∠APB = ∠CPD = θ. Then ∠BPC = ∠DPA =
π − θ. Let us also write PE = h1, PF = h2, PG = h3 and PH = h4.



Observe that

h1a = pq sin θ, h2b = qr sin θ, h3c = rs sin θ, h4d = sp sin θ.

Hence
1

h1
+

1

h3
=

1

h2
+

1

h4
.

is equivalent to
a

pq
+

c

rs
=

b

qr
+

d

sp
.

This is the same as
ars+ cpq = bsp+ dqr.

Thus we have to prove that a+c = b+d if and only if ars+cpq = bsp+dqr.
Now we can write a+ c = b+ d as

a2 + c2 + 2ac = b2 + d2 + 2bd.

But we know that

a2 = p2 + q2 − 2pq cos θ, c2 = r2 + s2 − 2rs cos θ

b2 = q2 + r2 + 2qr cos θ, d2 = p2 + s2 + 2ps cos θ,

Hence a+ c = b+ d is equivalent to

−pq cos θ +−rs cos θ + ac = ps cos θ + qr cos θ + bd.

Similarly, by squaring ars + cpq = bsp + dqr we can show that it is
equivalent to

−pq cos θ +−rs cos θ + ac = ps cos θ + qr cos θ + bd.

We conclude that a + c = b + d is equivalent to cpq + ars = bps + dqr.
Hence ABCD has an in circle if and only if

1

h1
+

1

h3
=

1

h2
+

1

h4
.



6. From a set of 11 square integers, show that one can choose 6 num-
bers a2, b2, c2, d2, e2, f 2 such that

a2 + b2 + c2 ≡ d2 + e2 + f 2 (mod 12).

Solution: The first observation is that we can find 5 pairs of squares
such that the two numbers in a pair have the same parity. We can
see this as follows:

Odd numbers Even numbers Odd pairs Even pairs Total pairs
0 11 0 5 5
1 10 0 5 5
2 9 1 4 5
3 8 1 4 5
4 7 2 3 5
5 6 2 3 5
6 5 3 2 5
7 4 3 2 5
8 3 4 1 5
9 2 4 1 5
10 1 5 0 5
11 0 5 0 5

Let us take such 5 pairs: say (x21, y
2
1), (x22, y

2
2), . . . , (x25, y

2
5). Then x2j − y2j

is divisible by 4 for 1 ≤ j ≤ 5. Let rj be the remainder when x2j − y2j
is divisible by 3, 1 ≤ j ≤ 3. We have 5 remainders r1, r2, r3, r4, r5.
But these can be 0, 1 or 2. Hence either one of the remainders
occur 3 times or each of the remainders occur once. If, for example
r1 = r2 = r3, then 3 divides r1 + r2 + r3; if r1 = 0, r2 = 1 and r3 = 2, then
again 3 divides r1+r2+r3. Thus we can always find three remainders
whose sum is divisible by 3. This means we can find 3 pairs, say,
(x21, y

2
1), (x22, y

2
2), (x23, y

2
3) such that 3 divides (x21−y21)+(x22−y22)+(x23−y23).

Since each difference is divisible by 4, we conclude that we can find
6 numbers a2, b2, c2, d2, e2, f 2 such that

a2 + b2 + c2 ≡ d2 + e2 + f 2 (mod 12).


