SECTION A

(For questions 31-42 all valid alternative solutions have been considered)
31. A.
I) $2 \mathrm{ZnS}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$
II) $\mathrm{ZnCO} 3 \longrightarrow \mathrm{ZnO}+\mathrm{CO}_{2}$
III) $\mathrm{ZnO}+\mathrm{C} \longrightarrow \mathbf{Z n}+\mathbf{C O}$
$\mathrm{ZnO}+\mathrm{CO} \longrightarrow \mathrm{Zn}+\mathrm{CO}_{2}$
OR

$$
2 \mathrm{ZnO}+\mathrm{C} \longrightarrow 2 \mathrm{Zn}+\mathrm{CO}_{2}
$$

31. B.

I. iv. It is a reaction between iron oxide and aluminium where aluminium acts as reducing agent and iron acts as oxidizing agent and reaction is exothermic.
II. $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{Al}_{(\mathrm{s})} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{Fe}_{(\mathrm{l})}$
31. C.
$\mathrm{P} 1 / \mathrm{T} 1=\mathrm{P} 2 / \mathrm{T} 2$ at constant volume $\mathrm{P} 2=\left(250 \times 10^{3} \times 1800\right) / 300=1.5 \times 10^{6} \mathrm{~Pa}$

Hence the cylinder will blow up.

32. A.

I) Consider $\mathrm{P}+\mathrm{Q}$ as a system. As the speed is constant, applied force must be equal and opposite of total frictional force (or balances total frictional force).

$$
\therefore F=\left(\mu_{P} m_{P}+\mu_{Q} m_{Q}\right) g=64 \mathrm{~N}
$$

II) Block Q experiences two forces from the table
A) Horizontal frictional force $\mu_{Q} \cdot m_{Q} \cdot g=48 \mathrm{~N}$
B) Vertical (normal) reaction force (numerically) equal to weight $W_{Q}=80 \mathrm{~N}$

This gives magnitude of the reaction force as $R=\sqrt{48^{2}+80^{2}}=16 \sqrt{34}=93.29 \mathrm{~N}$
Direction of \vec{R} makes angle of $\tan ^{-1}(5 / 3)$ with the horizontal, inclined towards P.
III)

32. B.
I) $\mathrm{P}=300 \mathrm{~J} / 6=50 \mathrm{~W}$
II) $\mathrm{K}=1 / 2 \mathrm{mv}^{2}=1 / 2 \times 25 \times(31 / 6)^{2}=334 \mathrm{~J}$
III) The student provides 300J of energy to the cycle in one full pedal. However the kinetic energy of the cycle remains constant as it moves with uniform velocity. So 300 J of energy is lost in dissipation in one full pedal.

Fraction $=300 / 334=0.9$ or 90%

33.

$1000 \mathrm{eV} \beta$ particle will give 15 low energy photons.
So 10 keV i.e. $10,000 \mathrm{eV} \beta$ particle will give 150 photons.
At 10\% efficiency photomultiplier will generate 15 electrons.
Now these 15 into m i.e. 15 m electrons will generate a charge of 15 fq .
$\mathrm{C}=120 \mathrm{pF}$ and voltage is 2 mV so Q on capacitor is $\mathrm{CV}=120 \times 10^{-12} \times 2 \times 10^{-3}=240 \times 10^{-15} \mathrm{Q}$ Which is same as $\mathrm{f} \times 15 \times 1.6 \times 10^{-19} \mathrm{Q} \rightarrow \mathrm{f}=10^{5}$.

34.

I. (ii) ~ 425
II. Violet-blue, violet or blue.
III. Chlorophyll
IV. Plant leaves appear green in color because pigments in leaves absorb violet-blue and red light and transmit green light.
V. Yes
VI. $6 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O}+$ Light energy $----->\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

OR , $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+$ Light energy $----->\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$. Release of oxygen is a measure of rate of photosynthesis in this experiment. Thus oxygen sensing bacteria was used in this experiment.
VII. Spectrophotometer / colorimeter
35.
I) $3 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \longrightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
II) 23 mL of 0.9 M of $\mathrm{H}_{3} \mathrm{PO}_{4}$ gives 0.0207 moles. Which implies 0.0621 moles of NaOH is consumed. 1 mole of NaOH is 40 grams and therefore 0.0621 moles of NaOH gives 2.48 grams.
III) 10% solution $\Rightarrow 10 \mathrm{~g}$ of HCl are found in 100 g of the solution

The mass 100 g is converted to volume of the solution using the density: $\rho=\mathrm{m} / \mathrm{V} \rightarrow \mathrm{V}=\mathrm{m} / \rho$
$(\mathrm{V}=100 / 1.047=95,5 \mathrm{~mL}) \Rightarrow 10 \mathrm{~g}$ of HCl are found in 95.5 mL of the solution. Therefore 104.7 g of HCl are found in 1000 mL of the solution.
$1 \mathrm{~mol}=36.5 \mathrm{~g}$
$\mathrm{x} \mathrm{mol}=104.7 \mathrm{~g}$
Therefore $\mathrm{x}=2.87$ and hence it is a 2.87 M solution
IV) Mass of HCl is $40 \mathrm{X} 1.140=45.60 \mathrm{grams}$

Therefore mass of reactants $=1.2+45.60=46.80 \mathrm{~g}$
But mass of reactants $=$ mass of products
$46.80 \mathrm{~g}=$ mass of solution + mass of CO_{2}
$46.80 \mathrm{~g}=46.7 \mathrm{~g}+$ mass of CO_{2}
Therefore mass of $\mathrm{CO}_{2}=0.1 \mathrm{~g}$
Volume of CO_{2} is $0.1 / 1.98=0.051 \mathrm{~L}$

36. A.

I) from dimensional analysis, $\mathrm{x}=1, \mathrm{y}=-2 \& \mathrm{z}=1, r_{s}=2 \mathrm{Gm} / \mathrm{c}^{2}$
II) $\mathrm{r}_{\mathrm{e}}=0.9 \mathrm{~cm}$.

Gravitational force between earth and the moon is unaffected.

36. B.

I) At the instant they cross, $\mathrm{s}_{\mathrm{m}}=6-\mathrm{s}_{\mathrm{p}} \therefore \mathrm{t}^{2}=6-5 \mathrm{t} . \therefore \mathrm{t}=1$

II) In this case, $s_{p}=s_{m}+6 \therefore 5 t=t^{2}+6$
$\therefore t=2 s$ (Prashant overtakes) and $3 s$ (Milind overtakes)

37.
I) $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
II) 70% of 1 ton is 700 kg of Carbon.

Mol. Wt of sugar is $180 \mathrm{gm} / \mathrm{mol}$ of which $72 \mathrm{gm} / \mathrm{mol}$ is Carbon.
Hence carbon is $72 / 180 * 100=40 \%$ of sugar.
Hence 700 kg carbon corresponds to $700 / 0.4=1750.0 \mathrm{~kg}$ of sugar/biomass.
III) 500 MW over 8000 hrs is $500 \times 8000 \times 3600 \mathrm{MJ}$ of electricity.

At 30% power plant efficiency, this needs: $500 \times 8000 \times \frac{3600}{0.3}$ MJ of heat. i.e. $500 \times$ $8000 \times \frac{3600}{0.3} \times \frac{1}{21} \mathrm{~kg}$ of coal i.e. 2.3 MT (mega tons) of coal.
IV) We need to sequester 2.3 MT of coal. 1 ton of coal needs 1.75 tons of biomass to sequester. Hence we need to grow $1.75 \times 2.3 \mathrm{MT}=4 \mathrm{MT}$ of biomass of biomass.
Since 1 hectare produces 50 tons of biomass per year, 4 megatons of biomass will need $4 / 50=0.08$ million hectares of land i.e. 80,000 hectares of land.
V) 80,000 hectares of land will receive $80000 \times 10000 \times 800=640 \times 10^{9}$ watts of solar radiation i.e. in a year, $640 \times 10^{9} \times 2000 \times 3600=4.6 \times 10^{18} \mathrm{~J}$ of solar energy.
This is turned into $500 \times 10^{6} \times 8000 \times 3600=1.44 \times 10^{16} \mathrm{~J}$ of electricity.
Solar to electric conversion efficiency is therefore: $\frac{1.44 \times 10^{16}}{4.6 \times 10^{18}} \times 100=0.3$
38. $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

$$
\begin{aligned}
& 2 \times 122.5=2 \times 74.5+96 \\
& \text { i.e. } 1 \mathrm{gm} \mathrm{KClO}_{3}=\frac{96}{2 \times 122.5}=0.39 \mathrm{gm} \mathrm{O}_{2} \\
& 2 \mathrm{KHCO}_{3} \rightarrow \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
& 2 \times 100=138+18+44 \\
& \text { i.e. } 1 \mathrm{gm} \mathrm{KHCO}_{3}=\frac{18}{2 \times 100}=0.09 \mathrm{gm} \mathrm{H}_{2} \mathrm{O}, \frac{44}{2 \times 100}=0.22 \mathrm{gm} \mathrm{CO}_{2} \\
& \mathrm{~K}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{~K}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
& 138=94+44 \\
& \text { i.e. } 1 \mathrm{gm} \mathrm{~K}_{2} \mathrm{CO}_{3}=\frac{44}{138}=0.32 \mathrm{gm} \mathrm{CO}_{2}
\end{aligned}
$$

Let w, c, o be the weight of water, carbondioxide and oxygen evolved.
Since all oxygen comes from chlorate, hence the weight of KClO_{3} in the sample is $\frac{o}{0.39}=\frac{40}{0.39}=102 \mathrm{gm}$.

Since all water comes from bicarbonate, hence the weight of KHCO_{3} in the sample is $\frac{w}{0.09}=\frac{18}{0.09}=200 \mathrm{gm}$.

The remainder is potassium carbonate i.e. the weight of $\mathrm{K}_{2} \mathrm{CO}_{3}$ is $1000-200-$ $102=698 \mathrm{gm}$

Hence the composition of the original mixture is: 10.2% chlorate, 20% bicarbonate and 69.8% carbonate.
39.

As both the projectiles have the same horizontal range, their angles of projection must be complementary. $\quad \therefore \sin \theta_{2}=\cos \theta_{1}$

Time of flight,

$$
T=\frac{2 u \sin \theta}{g} \quad \therefore T_{1}=\frac{2 u \sin \theta}{g} \quad \text { and, } T_{2}=\frac{2 u \cos \theta}{g}
$$

Horizontal range, $\quad R=(u \cos \theta) T=\frac{u^{2} \sin 2 \theta}{g}=\frac{g}{2} \times \frac{2 u \sin \theta}{g} \times \frac{2 u \cos \theta}{g}=\frac{g}{2} \times T_{1} \times T_{2}$

$$
\begin{aligned}
& \quad\left(T_{1}-T_{2}\right)^{2}=T_{1}^{2}+T_{2}^{2}-2 T_{1} T_{2} \\
& \therefore\left(T_{1}-T_{2}\right)^{2}=\frac{4 u^{2}}{g^{2}}-\frac{4 R}{g} \\
& \therefore u^{2}=g\left[\frac{g}{4}\left(T_{1}-T_{2}\right)^{2}+R\right]=2500 \\
& \quad \therefore u=50 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Alternate solution:
$t_{l}=\frac{2 u \cdot \sin \theta}{g} \quad t_{2}=t_{1}-6=\frac{2 u \cdot \cos \theta}{g}$
$160=\frac{2 u^{2} \cdot \cos \theta \cdot \sin \theta}{g}=\frac{2}{g} \times \frac{g t_{1}}{2} \times \frac{g\left(t_{1}-6\right)}{2}$
Forming and solving quadratic equation in t_{1}, we get $t_{1}=\sqrt{41}+3 \& t_{2}=\sqrt{41}-3$
Using $\sin \theta$ and $\cos \theta$ from the expressions of $t_{1} \& t_{2}$ in $\left(\sin ^{2} \theta+\cos ^{2} \theta=1\right)$, we get $u^{2}=$ 2500
$\therefore u=50 \mathrm{~m} / \mathrm{s}$
40.
I)

P1 nuclei

P2 mitochondria
P3 Membrane Fraction
P4 ribosome particles

40. II.

P1. Hematoxylin
P2. Redox dyes
P3. Lipophilic stains

40. III.

In animal cells: Mitochondria In plant cells: Mitochondria and chloroplast
40. IV.

Smooth Endoplasmic Reticulum
41.
I. (i) P
II. (i) P
III. (iii) R
IV. (iii) $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$ and temperature
V. (ii) Increase in germination frequency
42.
I. (ii) Water
II. (ii) active transport of salts from ascending tubule to interstitial fluid.
III. (iii) It will excrete large amount of dilute urine.
IV. (i) Aquatic
V. (i) semipermeable, isotonic, passive

