\square

Section A

\square

Section A (continued)

Q.No.	(b)	(c)	(d)	Q.No.	(a)	(b)	(c)	(d)
31	B			46	\triangle			
32				47	\searrow			
33		\triangle		48		\triangle		
34			\searrow	49		\sum		
35	B			50		χ		
36				51		\triangle		
37			\longrightarrow	52			χ	
38			\longrightarrow	53			χ	
39	y			54				X
40	-			55				
41				56	X			
42				57				\longrightarrow
43		\longrightarrow		58	\mathcal{L}			
44		\measuredangle		59		\triangle		
45				60		X		

\square

Section B : Long Answer Questions

Abstract

Ans 61. Any three points in the space fixes a plane. Note that ABC and ADC are two right-angled triangles (but possibly in different planes). Fixing the plane of $A B C$, the locus of D is a circle with $A C$ as axis. If X is the point on this circle closest to B then it lies in the plane of $A B C$ and ABXC is an isosceles trapezium. One can calculate BX using Pythagoras theorem to get $B X=4.6$. For any other point Y on the circle, triangle $B X Y$ is right-angled at X, and hence BY is maximum when XY is maximum (which happens when Y is diametrically opposite to X). Again by Pythagoras theorem we get $\mathrm{BY}=10$. Thus the maximum and minimum possible distances between B and D are 10 and 2.8 light years, respectively.

Ans 62.

i. $\quad X: I^{A} I^{O}, \quad Y: I^{B} I^{B}$ or $I^{B} I^{O}, \quad P: I^{B} I^{O}, \quad R: I^{B} I^{O}, Q: I^{A} I^{B}$
ii. Phenotypes of offsprings: either O or A blood group

Genotypes: $\mathrm{I}^{\mathrm{O}} \mathrm{I}^{\mathrm{O}}$ or $\mathrm{I}^{\mathrm{O}} \mathrm{I}^{\mathrm{A}}$
iii.

Blood group phenotype	Genotype	Antigen on the surface of RBC	Serum antibody
O	$\mathrm{I}^{\mathrm{O}} \mathrm{I}^{\mathrm{O}}$	Nil	Anti-A and Anti-B
A	$\mathrm{I}^{\mathrm{A}} \mathrm{I}^{\mathrm{A}}$ or $\mathrm{I}^{\mathrm{O}} \mathrm{I}^{\mathrm{A}}$	A antigen	Anti-B
B	$\mathrm{I}^{\mathrm{B}} \mathrm{I}^{\mathrm{B}}$ or $\mathrm{I}^{\mathrm{O}} \mathrm{I}^{\mathrm{B}}$	B antigen	Anti-A
AB	$\mathrm{I}^{\mathrm{A}} \mathrm{I}^{\mathrm{B}}$	A and B antigen	Nil

iv. c) O -ve and $\mathrm{AB}+\mathrm{ve}$

Ans 63.
i. Nitrogen fixation, Ammonification, Nitrification, Denitrification
ii. a) - True
b) - False
c) - False
d) - False
e) - True
f) - True
iii. a) No Fixation of nitrogen in leguminous plants of the field.
iv. a) Ammonium ions
\square

Ans 64.
i. $\quad 2 \mathrm{MnO}_{2}+\mathrm{As}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Mn}^{2+}+2 \mathrm{AsO}_{4}^{3-}+2 \mathrm{H}^{+}$
ii. i) $\quad 0.0750 \mathrm{~L} \times 0.0125 \mathrm{~mol} / \mathrm{L}=9.38 \times 10^{-4} \mathrm{~mol} \mathrm{As}_{2} \mathrm{O}_{3}$
ii) $\quad 0.01600 \mathrm{~L} \times 2.25 \times 10^{-3} \mathrm{~mol} / \mathrm{L}=3.6 \times 10^{-5} \mathrm{~mol} \mathrm{MnO}_{4}$

$$
3.6 \times 10^{-5} \mathrm{~mol} \mathrm{MnO}_{4}^{-} \times\left(5 \mathrm{~mol} \mathrm{As}_{2} \mathrm{O}_{3} / 4 \mathrm{~mol} \mathrm{MnO}_{4}^{-}\right)
$$

$$
=4.5 \times 10^{-5} \mathrm{~mol} \mathrm{As}_{2} \mathrm{O}_{3} \text { left }
$$

iii) $\quad 9.38 \times 10^{-4}-4.5 \times 10^{-5}=8.93 \times 10^{-4} \mathrm{~mol} \mathrm{As}_{2} \mathrm{O}_{3}$ react with $8.93 \times 10^{-4} \mathrm{~mol} \mathrm{As}_{2} \mathrm{O}_{3} \times\left(2 \mathrm{~mol} \mathrm{MnO}_{2} / 1 \mathrm{~mol} \mathrm{As}_{2} \mathrm{O}_{3}\right)$ $=1.8 \times 10^{-5} \mathrm{~mol} \mathrm{MnO}_{2}$
iii. $\quad 1.8 \times 10^{-5} \mathrm{~mol} \mathrm{MnO}_{2} \times\left(87 \mathrm{~g} \mathrm{MnO}_{2} / \mathrm{mol} \mathrm{MnO}_{2}\right)=0.156 \mathrm{~g} \mathrm{MnO}_{2}$ mass $\%$ of $\mathrm{MnO}_{2}=\left(0.156 \mathrm{~g} \mathrm{MnO}_{2} / 0.255 \mathrm{~g}\right.$ sample $) \times 100=62 \% \mathrm{MnO}_{2}$ in sample.
iv. The endpoint corresponds to a slight purple (pink) color due to excess $\mathrm{MnO}_{4}{ }^{-}$(aq).

Ans 65.
The average velocity in the first 20 seconds is 2 units $/ \mathrm{sec}$. The same during the next 20 seconds is 1 unit/sec and during the last 20 seconds is 1.5 unit/sec. Let M_1 denote the maximum velocity during the first 20 seconds and $\mathrm{M}_{2} 2$ denote the same during the last 20 seconds. Let m denote the minimum velocity during the middle 20 seconds. Then $\mathrm{M}_{\mathrm{l}} 1$ is at least $2, \mathrm{M} _2$ is at least 1.5 while m is at most 1 . So at some point of time the acceleration must have been negative and at some other point of time positive. Somewhere between these two points, the acceleration must have been zero.

Ans 66 a.

$10 \times 20 \times 30$ has a base of 10×20 with marbles of $\mathrm{r}=2 \mathrm{~cm}$
i.e. there are 10 in an line with 5 lines of marbles
i.e. 50 marbles on the lowest layer with 30 cm height implies 18 layer
i.e. 750 marbles 48% empty space $=48 \%$ of total volume should be available for water.
(Initial H = 14.4 cm)
\square

Ans 66 b.

We have considered the smaller mass m to be consisting of 2 smaller masses as shown in the figure. We have labled the smaller masses as m_{I} and m_{2}. Each will be having a mass of $m / 2$. The distance between the two smaller masses will just be r itself. Note that $r \ll \mathrm{R}$.

The force due to mass M on m_{l} will be given by

$$
\begin{equation*}
\mathrm{F}_{1}=G \frac{M \frac{m}{2}}{\left(R-\frac{t}{2}\right)^{2}} \tag{1}
\end{equation*}
$$

The force due to mass M on m 2 will be given by:

$$
\begin{equation*}
\mathrm{F}_{2}=G \frac{M \frac{m}{2}}{\left(R+\frac{N}{2}\right)^{2}} \tag{2}
\end{equation*}
$$

The mutual force between the 2 smaller halves will be given by

$$
\begin{equation*}
\mathrm{F}_{\mathrm{m}}=G \frac{\left(\frac{m}{2}\right)\left(\frac{m}{2}\right)}{r^{2}} \tag{3}
\end{equation*}
$$

The condition for the comet to break up will be when the difference of the forces on the two smaller masses will be greater than the mutual force of attraction between the two small masses.

$$
\begin{align*}
& \mathrm{F}_{1}-\mathrm{F}_{2}>\mathrm{F}_{\mathrm{m}} \tag{4}\\
& \quad G \frac{M \frac{m}{2}}{\left(R-\frac{v}{2}\right)^{2}}-G \frac{M \frac{m}{2}}{\left(R+\frac{L}{2}\right)^{2}}>G \frac{\left(\frac{m}{2}\right)\left(\frac{m}{2}\right)}{r^{2}} \tag{5}
\end{align*}
$$

Rearranging the above equation will give

$$
\begin{align*}
\frac{m}{2 M} & <r^{2}\left(\frac{\left(R+\frac{r}{2}\right)^{2}-\left(R+\frac{r}{2}\right)^{2}}{\left(R+\frac{r}{2}\right)^{2}\left(R-\frac{r}{2}\right)^{2}}\right) \tag{6}\\
\frac{m}{2 M} & <r^{2}\left(\frac{2 R r}{R^{4}}\right) \tag{7}
\end{align*}
$$

Here we have used $r \ll R$, in saying that $(R+r / 2)^{2}(R-r / 2)^{2} \approx R^{4}$
This will give

$$
\begin{gather*}
\frac{m}{r^{3}}<\frac{4 M}{R^{3}} \tag{8}\\
\rho<\frac{3 M}{\pi R^{3}} \tag{9}
\end{gather*}
$$

\square

Ans 67.

i. $\quad 2 \mathrm{NaN} 3: 0.2 \mathrm{KNO} 3$

2 X 65 : 0.2×101
130 : 20.2
$3.22: 1$ (mass by ratio)
ii. $\quad \mathrm{K}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{O}+\mathrm{SiO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~K}_{2} \mathrm{SiO}_{4}$ (alkaline silicate glass)
iii.
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
$+10 \mathrm{Na}(\mathrm{s})+2 \mathrm{KNO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{K}_{2} \underline{\mathrm{O}(\mathrm{s})+5 \mathrm{Na}_{2} \underline{\mathrm{O}}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})}$
$10 \mathrm{NaN}_{3}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{K}_{2} \mathrm{O}(\mathrm{s})+5 \mathrm{Na}_{2} \mathrm{O}+16 \mathrm{~N}_{2}$
$24 \mathrm{dm}^{3}=1$ mole N_{2}
$72 \mathrm{dm}^{3}=3$ mole N_{2}

16 moles $\mathrm{N}_{2}=10$ moles NaN_{3}

3 Moles $=(10 \times 3) / 16=15 / 8$ moles of NaN_{3}
Mass of $\mathrm{NaN}_{3}=(15 / 8) \times 65=121.5$
16 moles $\mathrm{N}_{2}=2$ mole KNO_{3}
3 moles of $\mathrm{N}_{2}=(3 \times 2) / 16=3 / 8 \mathrm{~mole}$
$3 / 8$ mole of $\mathrm{KNO}_{3}=(3 / 8) \times 101=303 / 8=37.9$

Total mass of NaN3 + KNO3 $=121.5+37.9=159.4 \mathrm{~g}$
iv. $\quad \Delta \mathrm{H}_{\mathrm{f}}$ for $\mathrm{NaN}_{3}=361.7 \mathrm{KJ} / \mathrm{mol}$

For $2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
$\Delta \mathrm{Hr}=-2 \mathrm{X} 361.7 \mathrm{KJ} / \mathrm{mol}=-723.4 \mathrm{KJ} / \mathrm{mol}$
Ans 68.
i. $\quad(\mathrm{Q} / \mathrm{t})=\mathrm{m} \mathrm{s}\left(\theta_{1}-\theta_{0}\right)=2 \mathrm{~m} \mathrm{~s}\left(\theta^{\prime}{ }_{1}-\theta_{0}\right) \quad \theta_{1}=40^{\circ} \mathrm{C}$ $(40-30)=2 \times(35-30)$
ii. $\quad(\mathrm{Q} / \mathrm{t})=\mathrm{ms}\left(\theta_{1}-\theta_{0}\right) \Rightarrow 3000=\mathrm{m} 4200(40-30) \Rightarrow \mathrm{m}=1 / 14 \mathrm{~kg} / \mathrm{s} \quad(\mathrm{V}=1 / 14 \mathrm{lit} / \mathrm{sec})$
iii. $\quad(1 / 14) \times 3.5 \times 60=15 \times 2=30$ lit
\therefore Water used $=15$ hot +15 lit cold $=30$ lit
iv. $\quad \mathrm{Q} / \mathrm{t}=\mathrm{ms}\left(\theta_{2}-\theta_{0}\right) \Rightarrow 3000=(1 / 14) 4200\left(\theta_{2}-25\right) \Rightarrow \theta_{2}=35^{\circ} \mathrm{C}$

The cold water tap should not be opened.
v. On the second floor, the pressure is doubled (Assuming that heater is located at the top of bathroom). As a result, the rate of flow of water will be doubled. Doubling the rate of flow into the heater will cause the increase in temperature by half the amount as earlier. Thus in the winter, the hot water tap will give water at $30^{\circ} \mathrm{C}$ instead of $35^{\circ} \mathrm{C}$ (An increase of $5^{\circ} \mathrm{C}$ instead of $10^{\circ} \mathrm{C}$), making the final temperature of the water as $30^{\circ} \mathrm{C}$, since the cold water tap is closed. In the summer, the hot water tap will give water at $35^{\circ} \mathrm{C}$ instead of $40^{\circ} \mathrm{C}$ (An increase of $5^{\circ} \mathrm{C}$ instead of $10^{\circ} \mathrm{C}$), and the cold water tap will still be at $30^{\circ} \mathrm{C}$. Thus the net temperature would be at $32.5^{\circ} \mathrm{C}$, since both will be open by the same amount.

