Section A

Section A (continued)

INJSO Answer key

PART B

Ans 61.

Each part carries 1 mark

1. y
2. n
3. n
4. y
5. n

Ans 62.
a)

Without catalyst	With catalyst
Threshold energy $=260 \mathrm{KJmol}^{-1}$	Threshold energy $=220 \mathrm{KJmol}^{-1}$
Energy of reactants $=160 \mathrm{KJmol}^{-1}$	Energy of reactants $=160 \mathrm{KJmol}^{-1}$
$\begin{aligned} \mathrm{E}_{\mathrm{a}}(\text { forward }) & =\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{r}} \\ & =260-160=100 \mathrm{KJmol}^{-1} \end{aligned}$	$\begin{aligned} \mathrm{E}_{\mathrm{a}}(\text { forward }) & =\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{r}} \\ & =220-160=60 \mathrm{KJmol}^{-1} \end{aligned}$
Energy of products $=200 \mathrm{KJmol}^{-1}$	Energy of products $=200 \mathrm{KJmol}^{-1}$
$\begin{aligned} \mathrm{E}_{\mathrm{a}}(\text { backward }) & =\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{p}} \\ & =260-200=60 \mathrm{KJmol}^{-1} \end{aligned}$	$\begin{aligned} \mathrm{E}_{\mathrm{a}}(\text { backward }) & =\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{p}} \\ & =220-200=20 \mathrm{KJmol}^{-1} \end{aligned}$

b) Energy of reactants A_{2} and $\mathrm{B}_{2}=160 \mathrm{KJmol}^{-1}$

Energy of products $\mathrm{AB}=200 \mathrm{KJmol}^{-1}$

$$
\begin{aligned}
\Delta \mathrm{H} & =\mathrm{E}_{\mathrm{p}}-\mathrm{E}_{\mathrm{r}} \\
& =200-160=40 \mathrm{KJmol}^{-1}
\end{aligned}
$$

Hence the reaction is endothermic.
c) In the presence of catalyst threshold energy becomes $220 \mathrm{KJmol}^{-1}$

$$
E_{a}^{\prime}(\text { forward })=220-160=60 \mathrm{KJmol}^{-1}
$$

$$
E_{a}^{\prime}(\text { backward })=220-200=20 \mathrm{KJmol}^{-1}
$$

Hence, Lowering in activation energy $=60-20=40 \mathrm{KJmol}^{-1}$
d) As the reaction does not involve any change in number of moles of gaseous species hence increased pressure does not have any effect on equilibrium.
e) If temperature is raised by $10^{\circ} \mathrm{C}$ the rate of reaction will become double.

f) Method I :

In the presence of catalyst threshold energy becomes $220 \mathrm{KJmol}^{-1}$

$$
\begin{aligned}
& E_{a}^{\prime}(\text { forward })=220-160=60 \mathrm{KJmol}^{-1} \\
& E_{a}^{\prime}(\text { backward })=220-200=20 \mathrm{KJmol}^{-1}
\end{aligned}
$$

$\mathrm{E}_{\mathrm{a}}($ forward $)-\mathrm{E}_{\mathrm{a}}($ forward $)=100-60=40 \mathrm{KJmol}^{-1}$
without catalyst with catalyst
$\left.\begin{array}{l}\underset{\mathrm{E}}{\mathrm{a}(\text { backward })} \\ \text { without catalyst }\end{array} \quad-\quad \begin{array}{c}\mathrm{E}_{\mathrm{a}}^{\prime}(\text { backward }) \\ \text { with catalyst }\end{array}\right)=60-20=40 \mathrm{KJmol}^{-1}$
Position of equilibrium will remain same because activation energy for the forward reaction and the backward reaction have decreased equally.

OR

Method II :

$\mathrm{E}_{\mathrm{a}}($ in absence of catalyst $)=260-160=100 \mathrm{KJmol}^{-1}$
$E^{\prime}{ }_{a}($ in presence of catalyst $)=220-160=60 \mathrm{KJmol}^{-1}$
Lowering in activation energy $=\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\mathrm{a}}{ }^{\prime}=100-60=40 \mathrm{KJmol}^{-1}$

OR

Method III :

Energy of activation in absence of catalyst is $260 \mathrm{KJmol}^{-1}$
Energy of activation in presence of catalyst is $220 \mathrm{KJmol}^{-1}$

Hence, Lowering in activation energy is $260-220=40 \mathrm{KJmol}^{-1}$

Ans 63.

a)

1. $\mathrm{a}=\frac{2 \mathrm{~s}}{\mathrm{t}}=\frac{2(2 \mathrm{~s})}{(5)^{2}}=2 \mathrm{~m} / \mathrm{s}^{2}$

Now, $\mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2} \quad \Rightarrow \mathrm{~s}_{1}=25 \mathrm{~m}$
2. $\mathrm{v}=\mathrm{a} \times \mathrm{t}=2 \times 5=10 \mathrm{~m} / \mathrm{s} \quad \Rightarrow \mathrm{s}_{2}=150 \mathrm{~m}$
3. $\mathrm{a}=-\frac{\mathrm{v}^{2}}{2 \mathrm{~s}}=-\frac{1}{2} \times \frac{10^{2}}{18}=-2.78 \mathrm{~m} / \mathrm{s}^{2} \quad$ It is negative
4. $18=\frac{1}{2} \times 2.78 \times \mathrm{t}^{2} \Rightarrow \mathrm{t}=3.60 \mathrm{sec}$

Also, $\mathrm{s}_{3}=17.98 \approx 18 \mathrm{~m}$
b)
$\mathrm{v}_{\mathrm{u}}=$ const
$\mathrm{a}_{\mathrm{s}}=1.5 \mathrm{~m} / \mathrm{s}$
$\mathrm{x}_{\mathrm{u}}-\mathrm{x}_{\mathrm{s}}=12 \mathrm{~m}$
Usha catches up with Shiney after time t
$\mathrm{x}_{\mathrm{u}}=\mathrm{v}_{\mathrm{u}} \times \mathrm{t}$
$\mathrm{x}_{\mathrm{s}}=0.5 \mathrm{a}_{\mathrm{s}} . \mathrm{t}^{2}$
$v_{u} t-0.75 t^{2}=12$
at time $\mathrm{t}, \mathrm{v}_{\mathrm{u}}=\mathrm{v}_{\mathrm{s}}=1.5 \mathrm{t}$ (since Usha is over taking Shiney)
$1.5 \mathrm{t}^{2}-0.75 \mathrm{t}^{2}-12=0$
$0.75 \mathrm{t}^{2}=12$
$\mathrm{t}=4 \mathrm{sec}$
$\mathrm{v}_{\mathrm{u}}=\mathrm{at}=6 \mathrm{~m} / \mathrm{s}$

Ans 64.
a) $\frac{3 \times\left(3^{\frac{3}{3}}\right)^{\frac{x+1}{3 x}+2}+\left(3^{\frac{3}{2}}\right) \times 33^{\frac{3 x}{}}}{3 \times(1 / 3)\left(3^{3}\right)^{x+1}}$

$$
=\frac{3 \times 3^{\frac{3 x+3}{}}}{3^{3 x+3}+3^{3}} \frac{3}{-1 / 3} \times 3^{3 x}+3 x
$$

$$
=\frac{3}{3^{3 x+3}} \frac{3 x+3}{(1-1 / 3)}=\frac{4}{2 / 3}=6
$$

b)

Ans 65.
a) $\underset{\mathrm{ZnS}}{\mathbf{A}}+$ dil. $\mathrm{HCl} \xrightarrow{\Delta} \mathbf{B}+\mathbf{C}$

b)

$$
\begin{aligned}
& \hline \mathbf{X} \equiv \mathbf{H g C l}_{\mathbf{2}} \mathbf{Y} \equiv \mathbf{N H}_{\mathbf{4}}{ }^{+} \\
& \mathrm{HgCl}_{2}+\mathrm{H}_{2} \mathrm{~S} \\
& \mathrm{H}^{+} \underset{\substack{\text { (Black ppt) }}}{\mathrm{HgS} \downarrow+2 \mathrm{HCl}} \\
& \mathrm{HgCl}_{2}+\mathrm{SnCl}_{2} \longrightarrow \underset{\text { (White ppt) }}{\mathrm{Hg}_{2} \mathrm{Cl}_{2} \downarrow}+\mathrm{SnCl}_{4} \\
& \mathrm{Hg}_{2} \mathrm{Cl}_{2}+\mathrm{SnCl}_{2} \longrightarrow \mathrm{Hg}+\mathrm{SnCl}_{4}
\end{aligned}
$$

Ans 66.

a) $0.5 \mathrm{mv}^{2}=\mathrm{q}(2-0)$

$$
\mathrm{v}=8.4 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

$\left(8.3 \leftarrow \rightarrow 8.5 \times 10^{5} \mathrm{~m} / \mathrm{s}\right.$
$8.0 \leftarrow \rightarrow 8.3$ and $8.5 \leftarrow \rightarrow 8.8 \times 10^{5} \mathrm{~m} / \mathrm{s}$
b) Heat required to raise the temp. of ice to $0^{\circ} \mathrm{C}=20 \times 0.5 \times 10=100 \mathrm{cal}$

Heat supplied by water coming to $0^{\circ} \mathrm{C}=100 \times 1 \times 10=1000 \mathrm{cal}$
Remaining heat to melt ice $=900 \mathrm{cal}$
Amount of ice that will melt $=900 / 80=11.25 \mathrm{gm}$
Total water amount at end $=111.25 \mathrm{gm}$

Ans. 67

1. a)
2. b)
3. a)False b)False
4. a)
5. c)

Ans 68.
a) $2^{\mathrm{n}}-615$ is positive
$\mathrm{n}=12$
b)
a) 11
b) $2 \mathrm{n}+1$

