## Section A



Section A (continued)

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

$\square$
Q.No. 61 (Section B)
A.)


1 mark

Magrituie is $(\sqrt{3+1}) k_{m b r^{-1}}=2 \mathrm{kmhn}^{-1}$ 0.5 mark

Direction is $60^{\circ}$ (or $120^{\circ}$ ). i.e. $\arctan (\sqrt{3})$ with respect to the rabbit's path. 0.5 mark
B.)

$$
\begin{aligned}
F & =4+12 t ; \quad F \sin \theta=m g \quad 1 \text { mark } \\
\sin 30^{\circ} & =\frac{1}{2} \quad \text { and }(4+12 t) \sin 30^{\circ}=m g \\
& \therefore \quad t=3 \mathrm{sec} \quad 0.5 \text { mark }
\end{aligned}
$$

Use this page if you need additional space for any question in Section $\mathbf{B}$. Mention the question number clearly.
61. B.

$$
F=4+12 t
$$

This force has a constant part and a rasiable past. The hosizoutal component of the acceleration $\partial u e$ to the constant part is.

$$
\begin{aligned}
& \frac{4 \cos \theta}{m}, \\
= & {\left[\cos 30^{\circ}=\frac{\sqrt{3}}{2}\right] . } \\
\mathrm{ms}^{-2} \quad & {[\because m=2 \mathrm{~kg}] }
\end{aligned}
$$

The average acceleration along the hobcigontal Direction, due to the variable part is

$$
\frac{1}{2} \cdot(12 t) \frac{\cos 30^{\circ}}{m}=3 \frac{\sqrt{3}}{2} t \mathrm{~ms}^{-2}
$$

Full arrange acceleration is,

$$
\begin{aligned}
& \bar{a}=\left(\sqrt{3}+\frac{3 \sqrt{3}}{2} t\right) \mathrm{ms}^{-2} \quad 1 \text { mark } \\
&: \bar{y}=\bar{a} t=\left(\sqrt{3} t+\frac{3 \sqrt{3} t^{2}}{2}\right) \mathrm{ms}^{-1} \\
&=\frac{33}{2} \sqrt{3} \mathrm{~ms}^{-1} \quad[\because t=3 \mathrm{sec}] \\
& \simeq 28.58 \mathrm{~ms}^{-1} \quad 0.5 \mathrm{mask}
\end{aligned}
$$

Q. No. 62 (Section B)

$$
\begin{gathered}
m=0.25 \mathrm{~kg}, u=5 \mathrm{~ms}^{-1}, v=-40 \mathrm{~ms}^{-1} \\
\Delta p=m(v-u)=-11.25 \mathrm{kgms}^{-1} 1 \mathrm{mark} \\
1 \text { mark }
\end{gathered}
$$

Average force $=\frac{\Delta p}{\Delta t}=-75 \mathrm{~N} \quad 1$ mark

Average change in momentum, $\Delta p$, is the area under the triangle.

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2} \times t \times F_{\text {max }}=\Delta p \quad 0.5 \text { mark } \\
& \therefore \quad F_{\text {max }}=2 \frac{\Delta p}{t}=150 \mathrm{~N} 0.5 \text { mark }
\end{aligned}
$$

For the second hare ball, time of Contact is 0.125 s .

$$
\therefore F_{\max }=180 \mathrm{~N} \quad 1 \text { mark }
$$

Q.No. 63 (Section B)

Part I:
b.) $801^{\circ} \mathrm{C}$ to $1465^{\circ} \mathrm{C}$ $\qquad$

Part II:
a.) $A B$
and CD
2 marks

PART II:
c.) $C D$

2 marks

APPROXIMATE RESULTS ARE FINE
If Total energy of the products is

$$
\begin{aligned}
& \text { Total energy of the products is } \\
& \quad 6 \times[-393.5-285.8] \mathrm{kJ}=-4075.8 \mathrm{~kJ}]\left[\begin{array}{l}
\text { Y } \\
\vdots \\
\vdots \\
n \\
\vdots
\end{array}\right] \\
& \text { Total energy of the reactants is }-1273.3 \mathrm{~kJ}]
\end{aligned}
$$

Net energy produced for 1 mole of glucose oxidization is

$$
[-1273.3-(-4075.8)] \mathrm{kJ}=\left[\begin{array}{l}
-2802.5 \mathrm{~kJ} \simeq-2800 \mathrm{xJ}]
\end{array}\right.
$$

2.) 1 mole of glucose has $:[(6 x, 2)+(16 \times 6)+(1 \times 12)]$ gan

$$
=180 \mathrm{gm}
$$

$\therefore \quad 10 \mathrm{gm}$ is equivalent of $\frac{1}{18}$ mole.
Given the reaction equation, no. of motes needed to oxidize ${ }^{10} \mathrm{gr} ~ f$ sheose is $\frac{6}{18}=\frac{1}{3}$ mole.

$$
\longrightarrow 11 \text { mas }
$$

$$
=8.16 \text { litres } \approx 8 \text { litton }
$$

is the volume of oxygen needed. $\longrightarrow 0.5$ mack

$$
\begin{gathered}
\text { Volume of ain need }=\frac{8.16}{20 \%}=40.8 \simeq 41 \text { litnes/(a0 lithe)) } \\
\longrightarrow 0.5 \text { marks) }
\end{gathered}
$$

$\square$
Use this page if you need additional space for any question in Section B. Mention the question number clearly.

Question 69: (contr.).
3.) ir mole of ghees ( 180 gm ) produces 6 voles of $\mathrm{CO}_{2}$.
$\therefore \frac{1}{18}$ mole of glucose win produce $\frac{1}{3}$ mole of $\mathrm{CO}_{2}$.

$$
\longrightarrow 1 \mathrm{mock}
$$

$$
\begin{aligned}
& P V=n R T . \quad 1 \text { atm. } \\
& \therefore V=\frac{1}{3} \times R \times 310=\frac{1}{3} \times 0.0821 \times 310 \text { litres } \\
& \therefore 8.5 \text { litres. }
\end{aligned}
$$

$\therefore 8.5$ litres of Dry coz win be produced on combustion of 10 gm of glucose

I mac
Q.No. 65 (Section B)
a.) $C$. (oxygen uptake) $\longrightarrow 0.5$ mark
b.) $a$ (axygen 2ebt) $\longrightarrow 0.5$ mark
c.) $a$ or $d \longrightarrow 1$ mark
d.) $a \longrightarrow 1$ mack
e.) $b \longrightarrow 1$ mask
f) $C \longrightarrow 1$ mak
$\square$
Q.No. 66 (Section B)
A. No. of dots is $n+2$ mark

No. of triangles is $\frac{n(n+1)}{2} \quad 2$ marks
$B$.

$$
\begin{aligned}
V & =x y z \\
S & =2(x y+y z+z x) \\
\frac{1}{S} & =\frac{1}{2 x y z\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)} \\
\Rightarrow \frac{1}{S} & =\frac{1}{2 v\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)} \quad 1 \text { mask }
\end{aligned}
$$

$\square$
Q. No. 67 (Section B)
i.)

$$
\begin{aligned}
& \text { WOMAN }-C \& E=0.5 \text { mark } \\
& \text { MAN } \quad C \& 0.5 \text { mark }
\end{aligned}
$$

ii.) $B \& D$
iii.)

$$
\text { MOTHER } B
$$

Father $\qquad$
1 mark
iv) $B$

1 mark
V) $A$

1 mark
$\square$
Q.No. 68 (Section B)

$$
\begin{aligned}
R & =r+r \| R \\
R & =r+\left(\frac{1}{2}+\frac{1}{R}\right)=1+\frac{R 1}{R+r} \\
\Rightarrow & R^{2}+r R=R / 2+r^{2}+R 1 \\
\therefore & R^{2}-1 R-r^{2}=0 \\
R & =\frac{1}{2}+\sqrt{s^{2}-4 \cdot 1 \cdot\left(-r^{2}\right)} \\
& =\frac{r}{2}(1+\sqrt{15})
\end{aligned}
$$

