			· •						
Q.No. 1	(a)	(b)	(c)	(d) X	Q.No. 16	(a)	(b)	(c)	(d)
2				X	17				
3				X	18			\mathbf{X}	
4	\boxtimes				19	\boxtimes			
5		X			20		\boxtimes		
6	\mathbf{X}				21				
7			\mathbf{X}		22				\boxtimes
8	\boxtimes		\boxtimes		23				\boxtimes
9			\mathbf{X}		24		\boxtimes		
10			\mathbf{X}		25				\boxtimes
11				X	26				\boxtimes
12			\boxtimes		27			\mathbf{X}	
13			\boxtimes		28			\boxtimes	
14	\boxtimes				29				\boxtimes
15		\boxtimes			30				X

Section A

		Sec		$\mathbf{I} \mathbf{A}$	(contin	iuea)		
Q.No. 31	(a)	(b) X	(c)	(d)	Q.No. 46	(a)	(b) X	(c)	(d)
32	\boxtimes				47			\boxtimes	
33				\mathbf{X}	48			\mathbf{X}	
34	\boxtimes				49				\boxtimes
35	\boxtimes				50		\boxtimes		
36	\boxtimes		·		51				\boxtimes
37	\boxtimes				52			\boxtimes	
38		\boxtimes			53	X			
39		\boxtimes			54				\boxtimes
40		\boxtimes			55	\boxtimes			
41	\boxtimes				56			\boxtimes	
42			\boxtimes		57				\boxtimes
43		\boxtimes			58				\mathbf{X}
44		\boxtimes			59	\mathbf{X}			
45		\boxtimes			60		\boxtimes		

Section A (continued)

Q.No.61 (Section B) A) D mark t Magnitule is $(\sqrt{3}+1)$ km hr' = 2 km hr' [0.5 mmk] Direction is 60° (or 120°). i.e. arctan (V3) with respect to the rabbit's path. 0.5 mark F= q + 12t; Fsind=mg [mark] B.) and (9+12t) sin30° = mg $\sin 30^{\circ} = \frac{1}{2}$ 0.5 mark . t = 3 sec

Use this page if you need additional space for any question in Section B. Mention the question number clearly.

61. B.
$$F = 4 + 12t$$

This force has a constant part and a
Variable part. The hostigental component of the
acceleration due to the Constant part is.
 $\frac{4 \cos \theta}{m}$. [Cos 30' = $\sqrt{3}$].
 $= \sqrt{3} \text{ ms}^{-2}$ [.' $m = 2 \text{ kg}$]
The average acceleration along the hoteigental
Direction, due to the variable part is
 $\frac{1}{2} \cdot (12t) \frac{\cos 30'}{2m} = 3 \frac{\sqrt{3}}{2} t \text{ ms}^{-2}$
Full average acceleration is.
 $\overline{a} = (\sqrt{3} + \frac{3}{2}t^2 t) \text{ ons}^{-2}$ [i morek]
velocity = $\overline{a} t = (\sqrt{3}t + \frac{3}{2}t^2 t^2) \text{ ms}^{-1}$
 $= \frac{33}{2} \sqrt{3} \text{ ms}^{-1}$ [: $t = 3 \sec^2$]

INJSO 20	009
----------	-----

Q.No.62 (Section B) M = 0.25 kg, $k = 5 m s^{-1}$, $V = -40 m s^{-1}$ 1 mark $\Delta p = m(v - u) = -11.25 \text{ kgms}^{-1}$ 1 mark Average force = $\frac{\Delta P}{\Delta L} = -75 N$ | mark Average change in momentum, sp, is the men under the triangle $= \frac{1}{2} \times t \times F_{max} = \Delta p \qquad [0.5 mark]$ $\therefore F_{max} = 2\frac{\Delta P}{1} = 150 \text{ N} \quad \begin{bmatrix} 0.5 \text{ mark} \end{bmatrix}$ For the second have ball, time of contact 0.125 5. is 1 mark : Fmax = 180 N

Roll Number: **INJSO 2009** Q.No.63 (Section B) PART] : b) 801° to 1465° c ____ 1 mark PART D : 2 marks and CD A) AB c) CD PART IN 2 marks 5

RUSO 2000
Red Number:
Q.No.64 (Section B) CALCULATION STEPS ARE VERY IMPORTANT
APPROXIMATE RESULTS ARE FINE
V Total energy of the products is

$$6 \times \left[-393.5 - 285.8 \right] \times J = -4075.8 \times J \left[\begin{array}{c} \times \\ 3 \\ \times \\ -393.5 - 285.8 \\ \end{array} \right] \times J = -4075.8 \times J \left[\begin{array}{c} \times \\ 3 \\ \times \\ \end{array} \right] \left[-393.5 - 285.8 \\ \end{array} \right] \times J = -4075.8 \times J \left[\begin{array}{c} \times \\ 3 \\ \times \\ \end{array} \right] \left[\begin{array}{c} -393.5 - 285.8 \\ \end{array} \right] \times J = -4075.8 \times J \left[\begin{array}{c} \times \\ 3 \\ \end{array} \right] \left[\begin{array}{c} \times \\ \end{array} \right] \left[-393.5 - 285.8 \\ \end{array} \right] \times J = -4075.8 \times J \left[\begin{array}{c} \times \\ 3 \\ \end{array} \right] \left[\begin{array}{c} \times \\ \end{array} \right] \left[-393.5 - 285.8 \\ \end{array} \right] \times J = -2852.5 \times 3 \times J \left[\begin{array}{c} \times \\ \end{array} \right] \left[\begin{array}{c} \times \\ \end{array} \right] \left[-1273.5 - \left(-4075.8 \\ \end{array} \right] \right] \times J = -2852.5 \times K3 \approx -2800 \times J \\ \end{array} \right] \left[\begin{array}{c} -1273.5 - \left(-4075.8 \\ \end{array} \right] \left[\times J = -2852.5 \times K3 \approx -2800 \times J \\ \end{array} \right] \left[\begin{array}{c} -1273.5 - \left(-4075.8 \\ \end{array} \right] \right] \times J = -2852.5 \times K3 \approx -2800 \times J \\ \end{array} \right] \left[\begin{array}{c} -1273.5 - \left(-4075.8 \\ \end{array} \right] \right] \times J = -2852.5 \times K3 \approx -2800 \times J \\ \end{array} \right] \left[\begin{array}{c} -1273.5 - \left(-4075.8 \\ \end{array} \right] \right] \times J = -2852.5 \times K3 \approx -2800 \times J \\ \end{array} \right] \left[\begin{array}{c} -1273.5 - \left(-4075.8 \\ \end{array} \right] \right] \times J = -2852.5 \times K3 \approx -2800 \times J \\ \end{array} \right] \left[\begin{array}{c} -1273.5 - \left(-4075.8 \\ \end{array} \right] \right] \times J = -2852.5 \times K3 \approx -2800 \times J \\ \end{array} \right] \left[\begin{array}{c} -1273.5 - \left(-4075.8 \\ \end{array} \right] \right] \times J = -2852.5 \times K3 \approx -2800 \times J \\ \end{array} \right] \left[\begin{array}{c} -1273.5 - \left(-4075.8 \\ \end{array} \right] \right] \times J = -2852.5 \times K3 \approx -2800 \times J \\ \end{array} \right] \left[\begin{array}{c} -1273.5 - \left(-4075.8 \\ \end{array} \right] \right] \times J = -2852.5 \times K3 \approx -2800 \times J \\ \end{array} \right] \left[\begin{array}{c} -1273.5 - \left(-4075.8 \\ \end{array} \right] \left[\begin{array}{c} -1275.5 - \left(-4075.8 \\ \end{array} \right] \right] \times J = -2852.5 \times K3 \approx -2800 \times J \\ \end{array} \right] \left[\begin{array}{c} -1275.5 - \left(-4075.8 \\ \end{array} \right] \left[\begin{array}{c} -1275.5 - \left(-4075.8 \\ \end{array} \right] \right] \times J = -2852.5 \times K3 \approx -2800 \times J \\ = 180 \ gmn$$

$$= 180 \ gmn$$

$$\vdots I = 0 \ gmn$$

$$\vdots I = 0$$

Use this page if you need additional space for any question in Section B. Mention the question number clearly.

Brestion 69: (conto.). I male of ghase (100 gm) produces 3/. 6 notes of CO2. in i mole of ghicox with produce is mole of co2. > I work P= latm. PV= nRT. · V = - x R x 310 = - 1 x 0.0821 x 310 litnes ~ 8.5 litres. . 8.5 litnes of day coz winde produced on 10 gm of glacose Compostion of > / mark

Q.No.65 (Section B) C. (orggen uptake) -> [0.5 mark] 2) (orggen det) -> 0.5 Ь.) mark *C*) d mark l ۵. 02 1 mark d.) α, 1 mark b う e) 1 mark fシ С

Roll Number: **INJSO 2009** Q.No.66 (Section B) Hop No. of dots is n+2 mark Α. 1 No. of triangles is <u>n(21+1)</u> 2 marks 0.5 mark B. V = xyzS = z (xy + yz + zx)0.5 mark $\frac{1}{S} = \frac{1}{2\pi y^2 \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)}$ $=) \frac{1}{S} = \frac{1}{2 \times \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{2}\right)}$ 1 mark

•		INJSO 2009	Roll Number:
	Q.No.67 (Section B)		
i)	WOMAN	- B & E	0.5 mark
	MAN	- c & F -	0.5 mark
ii.)	B4D	1	mark
·iii.)	MOTHER -	B	
	FATHER -	C	1 mask
in)	B		1 mark
√)	A		1 mark
		9	

Q.No.68 (Section B)

$$R = \Lambda + 4 ||_{R}$$

$$R = \Lambda + \left(\frac{1}{2} + \frac{1}{R}\right) = \Lambda + \frac{R_{L}}{R + R}$$

$$R = \Lambda + \left(\frac{1}{2} + \frac{1}{R}\right) = \Lambda + \frac{R_{L}}{R + R}$$

$$R^{2} + \frac{1}{R} = \frac{R_{L}}{R} + \Lambda^{2} + R_{L}$$

$$I = \frac{1}{R} + \frac{1}{\sqrt{R^{2} - 4 + 1 + R^{2}}}$$

$$R = -\frac{(-\Lambda) \pm \sqrt{R^{2} - 4 + 1 + (-\Lambda^{2})}}{2}$$

$$R = -\frac{(-\Lambda) \pm \sqrt{R^{2} - 4 + 1 + (-\Lambda^{2})}}{2}$$

$$R = -\frac{1}{2} \left(1 + \sqrt{S}\right)$$

$$R = -\frac{1}{2} \left(1 + \sqrt{S}\right)$$

$$R = -\frac{1}{2} \left(1 + \sqrt{S}\right)$$