Problems and Solutions: CRMO-2012, Paper 4

1. Let *ABCD* be a unit square. Draw a quadrant of a circle with *A* as centre and *B*, *D* as end points of the arc. Similarly, draw a quadrant of a circle with *B* as centre and *A*, *C* as end points of the arc. Inscribe a circle Γ touching the arc *AC* externally, the arc *BD* internally and also touching the side *AD*. Find the radius of the circle Γ .

Solution: Let *O* be the centre of Γ and *r* its radius. Draw $OP \perp AD$ and $OQ \perp AB$. Then OP = r, $OQ^2 = OA^2 - r^2 = (1 - r)^2 - r^2 = 1 - 2r$. We also have OB = 1 + r and BQ = 1 - r. Using Pythagoras' theorem we get

$$(1+r)^2 = (1-r)^2 + 1 - 2r.$$

Simplification gives $r = 1/6$.

2. Let a, b, c be positive integers such that a divides b^2 , b divides c^2 and c divides a^2 . Prove that abc divides $(a + b + c)^7$.

Solution: If a prime p divides a, then $p | b^2$ and hence p | b. This implies that $p | c^2$ and hence p | c. Thus every prime dividing a also divides b and c. By symmetry, this is true for b and c as well. We conclude that a, b, c have the same set of prime divisors.

Let $p^x || a, p^y || b$ and $p^z || c$. (Here we write $p^x || a$ to mean $p^x || a$ and $p^{x+1} |/a$.) We may assume min $\{x, y, z\} = x$. Now $b | c^2$ implies that $y \le 2z$; $c | a^2$ implies that $z \le 2x$. We obtain

$$y \le 2z \le 4x$$
.

Thus $x + y + z \le x + 2x + 4x = 7x$. Hence the maximum power of p that divides abc is $x + y + z \le 7x$. Since x is the minimum among x, y, z, p^x divides a, b, c. Hence p^x divides a + b + c. This implies that p^{7x} divides $(a + b + c)^7$. Since $x + y + z \le 7x$, it follows that p^{x+y+z} divides $(a + b + c)^7$. This is true of any prime p dividing a, b, c. Hence abc divides $(a + b + c)^7$.

3. Let *a* and *b* be positive real numbers such that a + b = 1. Prove that

$$a^a b^b + a^b b^a \le 1.$$

Solution: Observe

$$1 = a + b = a^{a+b}b^{a+b} = a^a b^b + b^a b^b$$

Hence

$$1 - a^{a}b^{b} - a^{b}b^{a} = a^{a}b^{b} + b^{a}b^{b} - a^{a}b^{b} - a^{b}b^{a} = (a^{a} - b^{a})(a^{b} - b^{b})$$

Now if $a \le b$, then $a^a \le b^a$ and $a^b \le b^b$. If $a \ge b$, then $a^a \ge b^a$ and $a^b \ge b^b$. Hence the product is nonnegative for all positive *a* and *b*. It follows that

$$a^a b^b + a^b b^a \le 1.$$

4. Let $X = \{1, 2, 3, ..., 11\}$. Find the the number of pairs $\{A, B\}$ such that $A \subseteq X$, $B \subseteq X$, $A \neq B$ and $A \cap B = \{4, 5, 7, 8, 9, 10\}$.

Solution: Let $A \cup B = Y$, $B \setminus A = M$, $A \setminus B = N$ and $X \setminus Y = L$. Then X is the disjoint union of M, N, L and $A \cap B$. Now $A \cap B = \{4, 5, 7, 8, 9, 10\}$ is fixed. The remaining 5 elements 1, 2, 3, 6, 11 can be distributed in any of the remaining sets M,

N, L. This can be done in 3^5 ways. Of these if all the elements are in the set L, then $A = B = \{4, 5, 7, 8, 9, 10\}$ and this case has to be omitted. Hence the total number of pairs $\{A, B\}$ such that $A \subseteq X$, $B \subseteq X$, $A \neq B$ and $A \cap B = \{4, 5, 7, 8, 9, 10\}$ is $3^5 - 1$.

5. Let ABC be a triangle. Let E be a point on the segment BC such that BE = 2EC. Let F be the mid-point of AC. Let BF intersect AE in Q. Determine BQ/QF.

Ď

Solution: Let CQ and ET meet AB in Sand T respectively. We have

$$\frac{[SBC]}{[ASC]} = \frac{BS}{SA} = \frac{[SBQ]}{[ASQ]}.$$

Using componendo by dividendo, we obtain

$$\frac{BS}{SA} = \frac{[SBC] - [SBQ]}{[ASC] - [ASQ]} = \frac{[BQC]}{[AQC]}.$$

Similarly, We can prove

$$\frac{BE}{EC} = \frac{[BQA]}{[CQA]}, \quad \frac{CF}{FA} = \frac{[CQB]}{[AQB]}$$

But BD = DE = EC implies that BE/EC = 2; CF = FA gives CF/FA = 1. Thus

$$\frac{BS}{SA} = \frac{[BQC]}{[AQC]} = \frac{[BQC]/[AQB]}{[AQC]/[AQB]} = \frac{CF/FA}{EC/BE} = \frac{1}{1/2} = 2.$$

Now

$$\frac{BQ}{QF} = \frac{[BQC]}{[FQC]} = \frac{[BQA]}{[FQA]} = \frac{[BQC] + [BQA]}{[FQC] + [FQA]} = \frac{[BQC] + [BQA]}{[AQC]}$$

This gives

$$\frac{BQ}{QF} = \frac{[BQC] + [BQA]}{[AQC]} = \frac{[BQC]}{[AQC]} + \frac{[BQA]}{[AQC]} = \frac{BS}{SA} + \frac{BE}{EC} = 2 + 2 = 4.$$

(Note: BS/SA can also be obtained using Ceva's theorem. One can also obtain the result by coordinate geometry.)

6. Solve the system of equations for positive real numbers:

$$\frac{1}{xy} = \frac{x}{z} + 1, \quad \frac{1}{yz} = \frac{y}{x} + 1, \quad \frac{1}{zx} = \frac{z}{y} + 1.$$

Solution: The given system reduces to

$$z = x^2y + xyz, x = y^z + xyz, y = z^2x + xyz.$$

Hence

$$z - x^2y = x - y^2z = y - z^2x$$

 $y^2 z > z^2 x > x^2 y.$

If x = y, then $y^2 z = z^2 x$ and hence $x^2 z = z^2 x$. This implies that z = x = y. Similarly, x = z implies that x = z = y. Hence if any two of x, y, z are equal, then all are equal. Suppose no two of x, y, z are equal. We may take x is the largest among x, y, z so that x > y and x > z. Here we have two possibilities: y > z and z > y. Suppose x > y > z. Now $z - x^2y = x - y^2z = y - z^2x$ shows that

But $y^2z > z^2x$ and $z^2x > x^2y$ give $y^2 > zx$ and $z^2 > xy$. Hence $(y^2)(z^2) > (zx)(xy)$. This gives $yz > x^2$. Thus $x^3 < xyz = (xz)y < (y^2)y = y^3$. This forces x < y contradicting x > y.

Similarly, we arrive at a contradiction if x > z > y. The only possibility is x = y = z. For x = y = z, we get only one equation $x^2 = 1/2$. Since x > 0, $x = 1/\sqrt{2} = y = z$.