Problems and Solutions: CRMO-2012, Paper 3

1. Let *ABCD* be a unit square. Draw a quadrant of a circle with *A* as centre and *B*, *D* as end points of the arc. Similarly, draw a quadrant of a circle with *B* as centre and *A*, *C* as end points of the arc. Inscribe a circle Γ touching the arcs *AC* and *BD* both externally and also touching the side *CD*. Find the radius of the circle Γ .

Solution: Let *O* be the centre of Γ . By symmetry *O* is on the perpendicular bisector of *CD*. Draw $OL \perp CD$ and $OK \perp BC$. Then OK = CL = CD/2 = 1/2. If *r* is the radius of Γ , we see that BK = 1 - r, and OE = r. Using Pythagoras' theorem

$$(1+r)^2 = (1-r)^2 + \left(\frac{1}{2}\right)^2$$
.
Simplification gives $r = 1/16$.

2. Let a, b, c be positive integers such that a divides b^5 , b divides c^5 and c divides a^5 . Prove that abc divides $(a + b + c)^{31}$.

Solution: If a prime p divides a, then $p | b^5$ and hence p | b. This implies that $p | c^4$ and hence p | c. Thus every prime dividing a also divides b and c. By symmetry, this is true for b and c as well. We conclude that a, b, c have the same set of prime divisors.

Let $p^x || a, p^y || b$ and $p^z || c$. (Here we write $p^x || a$ to mean $p^x || a$ and $p^{x+1} |/a$.) We may assume min $\{x, y, z\} = x$. Now $b | c^5$ implies that $y \le 5z$; $c | a^5$ implies that $z \le 5x$. We obtain

$$y \leq 5z \leq 25x$$
.

Thus $x + y + z \le x + 5x + 25x = 31x$. Hence the maximum power of p that divides abc is $x + y + z \le 31x$. Since x is the minimum among x, y, z, p^x divides a, b, c. Hence p^x divides a + b + c. This implies that p^{31x} divides $(a + b + c)^{21}$. Since $x + y + z \le 31x$, it follows that p^{x+y+z} divides $(a + b + c)^{31}$. This is true of any prime p dividing a, b, c. Hence abc divides $(a + b + c)^{31}$.

3. Let *a* and *b* be positive real numbers such that a + b = 1. Prove that

$$a^a b^b + a^b b^a \le 1.$$

Solution: Observe

$$1 = a + b = a^{a+b}b^{a+b} = a^a b^b + b^a b^b.$$

Hence

$$1 - a^{a}b^{b} - a^{b}b^{a} = a^{a}b^{b} + b^{a}b^{b} - a^{a}b^{b} - a^{b}b^{a} = (a^{a} - b^{a})(a^{b} - b^{b})$$

Now if $a \le b$, then $a^a \le b^a$ and $a^b \le b^b$. If $a \ge b$, then $a^a \ge b^a$ and $a^b \ge b^b$. Hence the product is nonnegative for all pointive *a* and *b*. It follows that

$$a^a b^b + a^b b^a \le 1.$$

4. Let $X = \{1, 2, 3, \dots, 10\}$. Find the the number of pairs $\{A, B\}$ such that $A \subseteq X$, $B \subseteq X$, $A \neq B$ and $A \cap B = \{5, 7, 8\}$.

Solution: Let $A \cup B = Y$, $B \setminus A = M$, $A \setminus B = N$ and $X \setminus Y = L$. Then X is the disjoint union of M, N, L and $A \cap B$. Now $A \cap B = \{5, 7, 8\}$ is fixed. The remaining seven elements 1, 2, 3, 4, 6, 9, 10 can be distributed in any of the remaining sets M,

N, *L*. This can be done in 3^7 ways. Of these if all the elements are in the set *L*, then $A = B = \{5, 7, 8\}$ and this case has to be omitted. Hence the total number of pairs $\{A, B\}$ such that $A \subseteq X$, $B \subseteq X$, $A \neq B$ and $A \cap B = \{5, 7, 8\}$ is $3^7 - 1$.

5. Let *ABC* be a triangle. Let *D*, *E* be a points on the segment *BC* such that BD = DE = EC. Let *F* be the mid-point of *AC*. Let *BF* intersect *AD* in *P* and *AE* in *Q* respectively. Determine the ratio of the area of the triangle *APQ* to that of the quadrilateral *PDEQ*.

Solution: If we can find [APQ]/[ADE], then we can get the required ratio as

$$\frac{[APQ]}{[PDEQ]} = \frac{[APQ]}{[ADE] - [APQ]}$$
$$= \frac{1}{([ADE]/[APQ]) - 1}$$

Now draw $PM \perp AE$ and $DL \perp AE$. Observe

$$[APQ] = \frac{1}{2}AQ \cdot PM, \ [ADE] = \frac{1}{2}AE \cdot DL.$$

Further, since $PM \parallel DL$, we also get PM/DL = AP/AD. Using these we obtain

$$\frac{[APQ]}{[ADE]} = \frac{AP}{AD} \cdot \frac{AQ}{AE}.$$

We have

$$\frac{AQ}{QE} = \frac{[ABQ]}{[EBQ]} = \frac{[ACQ]}{[ECQ]} = \frac{[ABQ] + [ACQ]}{[BCQ]} = \frac{[ABQ]}{[BCQ]} + \frac{[ACQ]}{[BCQ]} = \frac{AF}{FC} + \frac{AS}{SB}.$$

However

$$\frac{BS}{SA} = \frac{[BQC]}{[AQC]} = \frac{[BQC]/[AQB]}{[AQC]/[AQB]} = \frac{CF/FA}{EC/BE} = \frac{1}{1/2} = 2.$$

Besides AF/FC = 1. We obtain

$$\frac{AQ}{QE} = \frac{AF}{FC} + \frac{AS}{SB} = 1 + \frac{1}{2} = \frac{3}{2}, \quad \frac{AE}{QE} = 1 + \frac{3}{2} = \frac{5}{2}, \quad \frac{AQ}{AE} = \frac{3}{5}$$

Since $EF \parallel AD$ (since DE/EC = AF/FC = 1), we get AD = 2EF. Since $EF \parallel PD$, we also have PD/EF = BD/DE = 1/2. Hence EF = 2PD. Thus AD = 4PD. This gives and AP/PD = 3 and AP/AD = 3/4. Thus

$$\frac{[APQ]}{[ADE]} = \frac{AP}{AD} \cdot \frac{AQ}{AE} = \frac{3}{4} \cdot \frac{3}{5} = \frac{9}{20}$$

Finally,

$$\frac{[APQ]}{[PDEQ]} = \frac{1}{\left([ADE]/[APQ]\right) - 1} = \frac{1}{(20/9) - 1} = \frac{9}{11}.$$

(Note: BS/SA can also be obtained using Ceva's theorem. Coordinate geometry solution can also be obtained.)

6. Find all positive integers *n* such that $3^{2n} + 3n^2 + 7$ is a perfect square. **Solution:** If $3^{2n} + 3n^2 + 7 = b^2$ for some natural number *b*, then $b^2 > 3^{2n}$ so that $b > 3^n$. This implies that $b \ge 3^n + 1$. Thus $3^{2n} + 3n^2 + 7 = b^2 \ge (3^n + 1)^2 = 3^{2n} + 2 \cdot 3^n + 1.$

This shows that $2 \cdot 3^n \le 3n^2 + 6$. If $n \ge 3$, this cannot hold. One can prove this eithe by induction or by direct argument:

If $n \ge 3$, then

$$2 \cdot 3^{n} = 2(1+2)^{n} = 2\left(1+2n+\left(n(n-1)/2\right) \cdot 2^{2} + \cdots\right) > 2+4n+4n^{2}-4n$$
$$= 3n^{2}+(n^{2}+2) \ge 3n^{2}+11 > 3n^{2}+6.$$

Hence n = 1 or 2.

If n = 1, then $3^{2n} + 3n^2 + 7 = 19$ and this is not a perfect square. If n = 2, we obtain $3^{2n} + 3n^2 + 7 = 81 + 12 + 7 = 100 = 10^2$. Hence n = 2 is the only solution.