1. Prove that there do not exist natural numbers x and y, with $x>1$, such that

$$
\frac{x^{7}-1}{x-1}=y^{5}+1
$$

Solution. Simple factorisation gives $y^{5}=x\left(x^{3}+1\right)\left(x^{2}+x+1\right)$. The three factors on the right are mutually coprime and hence they all have to be fifth powers. In particular, $x=r^{5}$ for some integer r. This implies $x^{3}+1=r^{15}+1$, which is not a fifth power unless $r=-1$ or $r=0$. This implies there are no solutions to the given equation.
2. In a triangle $A B C, A D$ is the altitude from A, and H is the orthocentre. Let K be the centre of the circle passing through D and tangent to $B H$ at H. Prove that the line $D K$ bisects $A C$.

Solution. Note that $\angle K H B=90^{\circ}$. Therefore $\angle K D A=\angle K H D=90^{\circ}-\angle B H D=$ $\angle H B D=\angle H A C$. On the other hand, if M is the midpoint of $A C$ then it is the circumcenter of triangle $A D C$ and therefore $\angle M D A=\angle M A D$. This proves that D, K, M are collinear and hence $D K$ bisects $A C$.
3. Consider the expression

$$
2013^{2}+2014^{2}+2015^{2}+\cdots+n^{2}
$$

Prove that there exists a natural number $n>2013$ for which one can change a suitable number of plus signs to minus signs in the above expression to make the resulting expression equal 9999.

Solution. For any integer k we have

$$
-k^{2}+(k+1)^{2}+(k+2)^{2}-(k+3)^{2}=-4
$$

Note that $9999-\left(2013^{2}+2014^{2}+2015^{2}+2016^{2}+2017^{2}\right)=-4 m$ for some positive integer m. Therefore, it follows that

$$
\begin{aligned}
9999= & \left(2013^{2}+2014^{2}+2015^{2}+2016^{2}+2017^{2}\right) \\
& +\sum_{r=1}^{m}\left(-(4 r+2014)^{2}+(4 r+2015)^{2}+(4 r+2016)^{2}-(4 r+2017)^{2}\right)
\end{aligned}
$$

4. Let $A B C$ be a triangle with $\angle A=90^{\circ}$ and $A B=A C$. Let D and E be points on the segment $B C$ such that $B D: D E: E C=1: 2: \sqrt{3}$. Prove that $\angle D A E=45^{\circ}$.

Solution. Rotating the configuraiton about A by 90°, the point B goes to the point C. Let P denote the image of the point D under this rotation. Then $C P=B D$ and $\angle A C P=$ $\angle A B C=45^{\circ}$, so $E C P$ is a right-angled triangle with $C E: C P=\sqrt{3}: 1$. Hence $P E=E D$. It follows that $A D E P$ is a kite with $A P=A D$ and $P E=E D$. Therefore $A E$ is the angular bisector of $\angle P A D$. This implies that $\angle D A E=\angle P A D / 2=45^{\circ}$.
5. Let $n \geq 3$ be a natural number and let P be a polygon with n sides. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the lengths of the sides of P and let p be its perimeter. Prove that

$$
\frac{a_{1}}{p-a_{1}}+\frac{a_{2}}{p-a_{2}}+\cdots+\frac{a_{n}}{p-a_{n}}<2
$$

Solution. If r and s are positive real numbers such that $r<s$ then $r / s<(r+x) /(s+x)$ for any positive real x. Note that, by triangle inequality, $a_{i}<p-a_{i}$, so

$$
\frac{a_{i}}{p-a_{i}}<\frac{2 a_{i}}{p}
$$

for all $i=1,, 2 \ldots, n$. Summing this inequality over i we get the desired inequality.
6. For a natural number n, let $T(n)$ denote the number of ways we can place n objects of weights $1,2, \ldots, n$ on a balance such that the sum of the weights in each pan is the same. Prove that $T(100)>T(99)$.

Solution. Let $\mathcal{S}(n)$ denote the collection of subsets A of $X(n)=\{1,2, \ldots, n\}$ such that the sum of the elements of A equals $n(n+1) / 4$. Then the given inequality is equivalent to $|\mathcal{S}(100)|>|\mathcal{S}(99)|$. We shall give a map $f: \mathcal{S}(99) \rightarrow \mathcal{S}(100)$ which is one-to-one but not onto. Note that this will prove the required inequality.
Suppose that A is an element of $\mathcal{S}(99)$. If $50 \in A$ then define $f(A)=(A \backslash\{50\}) \cup\{100\}$. Otherwise, define $f(A)=A \cup\{50\}$. If A and B are elements of $\mathcal{S}(99)$ such that $f(A)=f(B)$ then either 50 belongs to both these sets or neither of these sets. In either of the cases we have $A=B$. Therefore f is a one-to-one function.
Note that every element in the range of f contains exactly one of 50 and 100. Let $B_{i}=$ $\{i, 101-i\}$. Then $B_{1} \cup B_{2} \cup \cdots B_{24} \cup B_{50}$ is an element of $\mathcal{S}(100)$. Clearly, this is not in the range of f. Thus f is not an onto function.

