1. Let \(ABC \) be an acute-angled triangle. The circle \(\Gamma \) with \(BC \) as diameter intersects \(AB \) and \(AC \) again at \(P \) and \(Q \), respectively. Determine \(\angle BAC \) given that the orthocentre of triangle \(APQ \) lies on \(\Gamma \).

2. Let \(f(x) = x^3 + ax^2 + bx + c \) and \(g(x) = x^3 + bx^2 + cx + a \), where \(a, b, c \) are integers with \(c \neq 0 \). Suppose that the following conditions hold:

 (a) \(f(1) = 0 \);
 (b) the roots of \(g(x) = 0 \) are the squares of the roots of \(f(x) = 0 \).

 Find the value of \(a^{2013} + b^{2013} + c^{2013} \).

3. Find all primes \(p \) and \(q \) such that \(p \) divides \(q^2 - 4 \) and \(q \) divides \(p^2 - 1 \).

4. Find the number of 10-tuples \((a_1, a_2, \ldots, a_{10}) \) of integers such that \(|a_1| \leq 1 \) and

\[
a_1^2 + a_2^2 + a_3^2 + \cdots + a_{10}^2 - a_1a_2 - a_2a_3 - a_3a_4 - \cdots - a_9a_{10} - a_{10}a_1 = 2.
\]

5. Let \(ABC \) be a triangle with \(\angle A = 90^\circ \) and \(AB = AC \). Let \(D \) and \(E \) be points on the segment \(BC \) such that \(BD : DE : EC = 3 : 5 : 4 \). Prove that \(\angle DAE = 45^\circ \).

6. Suppose that \(m \) and \(n \) are integers such that both the quadratic equations \(x^2 + mx - n = 0 \) and \(x^2 - mx + n = 0 \) have integer roots. Prove that \(n \) is divisible by 6.

——— * ———