31st Indian National Mathematical Olympiad-2016

Time: 4 hours

January 17, 2016

Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions. Maximum marks: 100.
- Answer to each question should start on a new page. Clearly indicate the question number.
- 1. Let ABC be triangle in which AB = AC. Suppose the orthocentre of the triangle lies on the incircle. Find the ratio AB/BC.
- 2. For positive real numbers a, b, c, which of the following statements necessarily implies a = b = c: (I) $a(b^3 + c^3) = b(c^3 + a^3) = c(a^3 + b^3)$, (II) $a(a^3 + b^3) = b(b^3 + c^3) = c(c^3 + a^3)$? Justify your answer.
- 3. Let \mathbb{N} denote the set of all natural numbers. Define a function $T : \mathbb{N} \to \mathbb{N}$ by T(2k) = k and T(2k+1) = 2k+2. We write $T^2(n) = T(T(n))$ and in general $T^k(n) = T^{k-1}(T(n))$ for any k > 1.

(i) Show that for each $n \in \mathbb{N}$, there exists k such that $T^k(n) = 1$.

(ii) For $k \in \mathbb{N}$, let c_k denote the number of elements in the set $\{n : T^k(n) = 1\}$. Prove that $c_{k+2} = c_{k+1} + c_k$, for $k \ge 1$.

- 4. Suppose 2016 points of the circumference of a circle are coloured red and the remaining points are coloured blue. Given any natural number $n \ge 3$, prove that there is a regular *n*-sided polygon all of whose vertices are blue.
- 5. Let ABC be a right-angled triangle with $\angle B = 90^{\circ}$. Let D be a point on AC such that the inradii of the triangles ABD and CBD are equal. If this common value is r' and if r is the inradius of triangle ABC, prove that

$$\frac{1}{r'} = \frac{1}{r} + \frac{1}{BD}.$$

6. Consider a nonconstant arithmetic progression $a_1, a_2, \ldots, a_n, \ldots$ Suppose there exist relatively prime positive integers p > 1 and q > 1 such that a_1^2, a_{p+1}^2 and a_{q+1}^2 are also the terms of the same arithmetic progression. Prove that the terms of the arithmetic progression are all integers.