$31^{\text {st }}$ Indian National Mathematical Olympiad-2016

Time: 4 hours
January 17, 2016
Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions. Maximum marks: 100.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. Let $A B C$ be triangle in which $A B=A C$. Suppose the orthocentre of the triangle lies on the incircle. Find the ratio $A B / B C$.
2. For positive real numbers a, b, c, which of the following statements necessarily implies $a=b=c$: (I) $a\left(b^{3}+c^{3}\right)=b\left(c^{3}+a^{3}\right)=c\left(a^{3}+b^{3}\right)$, (II) $a\left(a^{3}+b^{3}\right)=b\left(b^{3}+c^{3}\right)=c\left(c^{3}+a^{3}\right)$? Justify your answer.
3. Let \mathbb{N} denote the set of all natural numbers. Define a function $T: \mathbb{N} \rightarrow \mathbb{N}$ by $T(2 k)=k$ and $T(2 k+1)=2 k+2$. We write $T^{2}(n)=T(T(n))$ and in general $T^{k}(n)=T^{k-1}(T(n))$ for any $k>1$.
(i) Show that for each $n \in \mathbb{N}$, there exists k such that $T^{k}(n)=1$.
(ii) For $k \in \mathbb{N}$, let c_{k} denote the number of elements in the set $\left\{n: T^{k}(n)=1\right\}$. Prove that $c_{k+2}=c_{k+1}+c_{k}$, for $k \geq 1$.
4. Suppose 2016 points of the circumference of a circle are coloured red and the remaining points are coloured blue. Given any natural number $n \geq 3$, prove that there is a regular n-sided polygon all of whose vertices are blue.
5. Let $A B C$ be a right-angled triangle with $\angle B=90^{\circ}$. Let D be a point on $A C$ such that the inradii of the triangles $A B D$ and $C B D$ are equal. If this common value is r^{\prime} and if r is the inradius of triangle $A B C$, prove that

$$
\frac{1}{r^{\prime}}=\frac{1}{r}+\frac{1}{B D}
$$

6. Consider a nonconstant arithmetic progression $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ Suppose there exist relatively prime positive integers $p>1$ and $q>1$ such that a_{1}^{2}, a_{p+1}^{2} and a_{q+1}^{2} are also the terms of the same arithmetic progression. Prove that the terms of the arithmetic progression are all integers.
