
Regional Mathematical Olympiad-2018

Solutions

1. Let ABC be a triangle with integer sides in which AB < AC. Let the tangent to the circumcircle
of triangle ABC at A intersect the line BC at D. Suppose AD is also an integer. Prove that
gcd(AB,AC) > 1.

Solution: We may assume that B lies between C and D. Let AB = c,BC = a and CA = b. Then
b > c. Let BD = x and AD = y. Observe thast ∠DAB = ∠DCA. Hence 4DAB ∼ 4DCA. We
get

x

y
=

c

b
=

y

x + a
.

Therefore xb = yc and by = c(x + a). Eliminating x, we get y = abc/(b2 − c2).

Suppose gcd(b, c) = 1. Then gcd(b, b2 − c2) = 1 = gcd(c, b2 − c2). Since y is an integer, b2 − c2

divides a. Therefore b + c divides a. Hence

a ≥ b + c.

This contradicts triangle inequality. We conclude that gcd(b, c) > 1.

2. Let n be a natural number. Find all real numbers x satsfying the equation
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.

Solution: Observe that x 6= 0. We also have
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Hence equality holds every where. It follows that x = |x| and |x| = 1/|x|. We conclude that x = 1
is the unique solution to the equation.

3. For a rational number r, its period is the length of the smallest repeating block in its decimal
expansion. For example, the number r = 0.123123123 · · · has period 3. If S denotes the set of all
rational numbers r of the form r = 0.abcdefgh having period 8, find the sum of all the elements of
S.

Solution: Let us first count the number of elements in S. There are 108 ways of choosing a block
of length 8. Of these, we shoud not count the blocks of the form abcdabcd, abababab, and aaaaaaaa.
There are 104 blocks of the form abcdabcd. They include blocks of the form abababab and aaaaaaaa.
Hence the blocks of length exactly 8 is 108 − 104 = 99990000.



For each block abcdefgh consider the block a′b′c′d′e′f ′g′h′ where x′ = 9−x. Observe that whenever
0.abcdefgh is in S, the rational number 0.a′b′c′d′e′f ′g′h′ is also in S. Thus every element 0.abcdefgh
of S can be uniquely paired with a distinct element 0.a′b′c′d′e′f ′g′h′ of S. We also observe that

0.abcdefgh + 0.a′b′c′d′e′f ′g′h′ = 0.99999999 = 1.

Hence the sum of elements in S is

99990000

2
= 49995000.

4. Let E denote the set of 25 points (m,n) in the xy-plane, where m,n are natural numbers, 1 ≤ m ≤ 5,
1 ≤ n ≤ 5. Suppose the points of E are arbitrarily coloured using two colours, red and blue. Show
that there always exist four points in the set E of the form (a, b), (a+ k, b), (a+ k, b+ k), (a, b+ k)
for some positive integer k such that at least three of these four points have the same colour. (That
is, there always exist four points in the set E which form the vertices of a square and having at
least three points of the same colour.)

Solution: Name the points from bottom row to top (and from left to right) as Aj , Bj , Cj , Dj , Ej ,
1 ≤ j ≤ 5.

Note that among 5 points A1, B1, C1, D1, E1,
there are at least 3 points of the same colour,
say, red. (This folllows from pigeonhole prin-
ciple.) We consider several cases: (the argu-
ment holds irrespective of the colour assigned
to the other two points.)
(I) Take three adjacent points having the same
colour. (e.g. A1, B1, C1 or B1, C1, D1.) The
argument is similar in both the cases. If
A1, B1, C1 are red then A2, B2, C2 are all blue;
otherwise we get a square having three red
vertices. The same reasoning shows that A3, B3, C3 are all red. Now A1, C1, A3, C3 have all red
vertices.

(II) Three alternate points A1, C1, E1 which are red: Then A3, C3, E3 have to be blue; otherwise,
we get a square with three red vertices. Same reasoning shows that A5, C5, E5 are red. Therefore
we have A1, E1, A5, E5 have red colour.
(III) Only two adjacent points having red colour: There are three sub cases.
(a) A1, B1, D1 red: In this case A2, B2 are blue and therefore A3, B3 are red. But then B1, D1, B3

are red vertices of a square.
(b) B1, C1, E1 are red. This is similar to case (a).
(c) A1, B1, E1 are red. We successively have A2, B2 blue; A3, B3 red; A4, B4 blue; A5, B5 red. Now
A1, E1, A5 are the red vertices of a square.
These are the only essential cases and all other reduce to one of these cases.

5. Find all natural numbers n such that 1 + [
√

2n] divides 2n. (For any real number x, [x] denotes the
largest integer not exceeding x.)

Solution: Let [
√

2n] = k. We observe that x− 1 < [x] ≤ x. Hence

√
2n < 1 + k ≤ 1 +

√
2n.
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Divisibility gives (1 + k)d = 2n for some positive integer d. Therefore we obtain

√
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2n

d
≤ 1 +

√
2n.

The first inequality gives d <
√

2n < 1 + k. But then
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We thus obtain k − 1 < d < k + 1. Since d is an integer, it follows that d = k. This implies that
n = k(k + 1)/2. Thus n is a triangular number. It is easy to check that every triangular number is
a solution.

6. Let ABC be an acute-angled triangle with AB < AC. Let I be the incentre of triangle ABC, and
let D,E, F be the points at which its incircle touches the sides BC,CA,AB, respectively. Let BI,
CI meet the line EF at Y,X, respectively. Further assume that both X and Y are outside the
triangle ABC. Prove that
(i) B,C, Y,X are concyclic; and
(ii) I is also the incentre of triangle DYX.

Solution:
(a) We first show that BIFX is a cyclic quadrilateral. Since ∠BIC = 90◦ + (A/2), we see that
∠BIX = 90◦−(A/2). On the otherhand FAE is an isosceles triangle so that ∠AFE = 90◦−(A/2).
But ∠AFE = ∠BFX as they are vertically opposite angles. Therefore ∠BFX = 90◦ − (A/2) =
∠BIX. It follows that BIFX is a cyclic quadrilateral. Therefore ∠BXI = ∠BFI. But ∠BFI =
90◦ since IF ⊥ AB. We obtain ∠BXC = ∠BXI = 90◦.

A similar consideration shows that ∠BY C = 90◦. Therefore ∠BXC = ∠BY C which implies that
BCYX is a cyclic quadrilateral.

(b) We also observe that BDIX is a cyclic
quadrilateral as ∠BXI = 90◦ = ∠BDI and
therefore ∠BXI + ∠BDI = 180◦. This gives
∠DXI = ∠DBI = B/2. Now the concyclic-
ity of B, I, F,X shows that ∠IXF = ∠IBF =
B/2. Hence ∠DXI = ∠IXF . Hence XI bi-
sects ∠DXY . Similarly, we can show that Y I
bisects ∠DYX. It follows that I is the incen-
tre of 4DYX as well.
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